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Summary

Some new third-order rotatable designs in three dimensions are
derived from some of the available third-order rotatable designs in two
dimensions. When these designs are used the results of the experi-
ments performed according to the two-dimentional designs need not be
discarded. Some of these designs may be performed sequentially in
all three factors, starting with a one-dimensional design. Further,
these third-order rotatable designs require a smaller number of points
than most of the available three-dimensional third-order rotatable de-
signs.

1. Introduction

For a rotatable design, the variance of the estimated response is
constant at points equidistant from the centre of the design (Box and
Hunter [2]) and further, the variance of the difference between the
estimated responses at any two points is a function of the distances
of the points from the centre of the design and the angle subtending
the points at the centre (Herzberg [11]).

The problem considered in this paper is that of constructing third-
order rotatable designs in three dimensions from those in two dimensions
such that the experiments performed according to the two-dimensional
designs need not be discarded when analysing the three-dimensional
designs (a dth order design permits all the coefficients in a polynomial
of order d to be estimated).

The designs constructed allow experiments to be performed ‘sequen-
tially’ in the factors by starting with experiments involving two fac-
tors only. After performing a two-dimensional design the experiments
may be stopped if it is felt that the third factor is not really needed,
while if it is felt that another factor should have been included, the ex-
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perimenter may proceed by the method presented without discarding
the original results. The number of additional experiments required
to convert the two-dimensional designs into three-dimensional designs
is smaller than the number of experiments required by the designs
with minimum number of experiments among the available three-dimen-
sional third-order rotatable designs which are all non-sequential in the
factors. The designs presented may therefore be more economic.

The moment requirements of a rotatable design were derived by
Box and Hunter [2]. The necessary and sufficient conditions for a k-
dimensional point-set to be a non-singular third-order rotatable design
were obtained by Gardiner, Grandage and Hader [8] and the geomet-
rical interpretation of these conditions was derived by Draper [4]. For
the sake of brevity, these conditions are not to be restated here.

2. Available third-order rotatable designs

Gardiner, Grandage and Hader [8], Draper [4], [5], [7], Thaker and
Das [15], Das and Narasimham [3], Herzberg [9], Tyagi [17], Nigam
[14] and Huda [13] have considered the problem of constructing third-
order rotatable designs. In particular, Gardiner, Grandage and Hader
[8], Draper [4], [7] and Das and Narasimham [3] provided a large num-
ber of three-dimensional third-order rotatable designs. However, none
of these designs can be performed °‘sequentially’ in the factors. The
designs with the minimum number of points among these require 32
points (Herzberg and Cox [12]), others requiring 42 or more points.

3. The construction of three-dimensional designs from two-dimensional
designs

It is known from Box and Hunter [2], Bose and Carter [1] and
Gardiner, Grandage and Hader [8] that a set of N’ (=7) points equally
spaced on a circle centred at the origin satisfies the moment require-
ments of a third-order rotatable set and hence, two-dimensional third-
order rotatable designs may be constructed by combining such point-
sets associated with two or more distinet circles. Suppose such a design
is given by the points (x{?, 2{?) (1=1, 2; u=1,---, N') where for each 4
the points are equally spaced on the circle of radius p; (=1, 2). Fur-
ther, let A=(N'/2)(pi+p}), B=(N'[8)(pi+p:) and C=(N'/48)(pi+ p3).

Now consider a three-dimensional point-set given by the 2N’422
points

(mﬂ?r wgzit)’ O) (uzli"” N,; ?/'_:19 2)9
(£d, 0, £b),
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(1) (£v, +v, +a),

For this set of points the following conditions hold :
S et =A+4d 8 (i=1,2),
S 2, =3B+4d'+8  (i=1,2),

) ot =B+8v,
u=1

M=

%, =15C+4d°+8  (i=1,2),

13
Il
-

an

 atal=3C+8 (i3 4, 5=1,2),

x5, =8b*+8a'+2(a’+ B2 +7Y) ,

M=

8
1]
-

)t =8+ 80+ 2+ 4 1Y)

ﬁ 22,2t =4b%d? 4 8v%a’ (t=1, 2),
S w8, =8b+ 80+ 2(e+ B+ 1Y) ,

u=1

S dhat='d 80 (i=1,2),

wmmsu =4b’d*+8a** t=12),

% ﬁMz

% wtas,x5,=8v'a?,
and all other sums of powers and products up to order six are zero.
It follows that this set of points forms a third-order rotatable design
in three dimensions if

=24, b2=a2=%v2 )
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and

B 3C
2 ‘:.._. ’ 62_ 1]
(2) Y16 LT
with

(3) a2+,32+72=%(A—8v2), B =180", oS B4 5=6308 .

Let pi=tp! (1#t=0). Then the two equations in (2) are simultaneously
satisfied if there exists a nonnegative ¢ such that

(4) 1+ _ 512
(1+t%: 49N’ °
and then v*={N’(1+1%/128}"p}. Clearly such a t exists for N’'<10.
Consider the case N'=7. Then the solution to (4) is given by t=

0.46945 whence p2=0.46945p?, 1*=0.25834p:. Therefore, (3) is replaced
by

@4 fi+72=1.538180¢ ,
(5) ot + B+ 1'=1.20131p¢ ,
o4 B4 7$=1.086220¢ .

Let o*=pp?, B'=qp?, y’=rp:. It follows that p, q,r have to be non-
negative real roots of the cubic equation

9(2)=2"—2"(p+q+7)+2(pg+qr-+rp)—pgr=>0
which may, due to (5), be written as
(6) 9:(2)=2"—2%(1.53818) +2(0.58234) —0.04471=0 .

Now from the theory of cubic equations (see Turnbull [16]) it is
known that the 3 roots of the cubic equation,

(7) 24+a,22+az2+a;=0,

are all real if

AS AZ
8 d==L4 22 <0,
(8) 27+ T
where
(9) AI=<a2_%af> ’ Azz%af—‘;—alaz‘l'a:; .

Further, the three real roots of (7) are then given by
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1/2 . .
z=2<—%) cos(0+32'7”)—-;—al (7=0, 1, 2)

where §=Arec cos {— 4,/2(— 4}/27)"%}.

Clearly, the conditions for having 3 real roots are satisfied by g,(z)
in (6). Further, since g,(2)<0 for 2<0, all the roots are strictly positive.
Thus nonnegative p, q, r and hence, nonnegative o?, 8, y* satisfying (3)
exist. Therefore, when N’'=7, the 36 points described in (1) form a
third-order rotatable design in three dimensions if p?, of, *?, a?, b, d?
o?, B* and 7 are appropriately chosen in the manner described.

Consider the case N’=8. Then the solution to (4) is given by t=
0.3537 whence p2=0.3537p? and v*=0.26518p!. Therefore, (3) is replaced
by

&’ + B2+ 1'=1.64669p0? ,
o'+ B+ =1.265T4pt ,
a*+ 3044 =1.17476, .

Let o’=pp!, Bi=qp?, y*=7rp}. The p,q,r have to be nonnegative real
roots of

(10) 9:(2) =2° — 2(1.64669) +2(0.72292) — 0.09364 =0 .

It can readily be seen from (7), (8) and (9) that (10) has 3 positive
real roots. Therefore, when N’=8, the 38 points described in (1) form
a third-order rotatable design in three dimensions if p?, p?, %, a?, b?, d?,
o, B and ¢* are suitably chosen.

4, Comments

When N’=10, a third-order rotatable design in three dimensions
with 42 points may be constructed in the manner described. However,
when N’'=9, the solution to (4) is given by ¢=0.2485 and then sur-
prisingly, (3) cannot be satisfied since calculations show that nonnega-
tive real p, q, r of the desired type do not exist. This is rather an un-
expected result. However, some variation of the method might work.

Draper [6] presented a method of constructing a second-order rotat-
able design in k dimensions from a second-order rotatable design in
(k—1) dimensions. Herzberg [10] presented an alternative method for
which the results of the experiments performed according to the (k—1)-
dimensional design need not be discarded. The three-dimensional third-
order rotatable designs presented here share some of the features of
the designs constructed by Herzberg’s method. These designs allow
the experiments to be performed ‘sequentially’ in the factors by start-



370 S. HUDA

ing with experiments involving two factors rather than all three factors
and this can result in saving of resources. The 38-point and the 42-
point designs derived are particularly interesting since these may be
performed sequentially, beginning with symmetric one-dimensional de-
signs.

It may be possible to derive designs sequential in the factors from
two-dimensional designs other than those considered here.

The method described may be extended to construct higher-dimen-
sional designs which are sequential in the factors.
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