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Summary

In this paper, we show that gamma, Meixner hypergeometric and
negative binomial distributions can be characterized by their canonical
measures.

1. Introduction

By the Meixner hypergeometric distribution we mean the distribu-
tion whose characteristic function f(f) has the form

1.1) f(t)={cosh ct—10 sinh ct}~*, —oo<t< oo

where p, ¢ and 6 are real parameters such that p>0. For =0, we
have

1.2) f()={cosh ct}~*

which is known as the generalized hyperbolic secant distribution (Hark-
ness and Harkness [4]).

Meixner hypergeometric distributions were first defined and studied
by Meixner [10] and [11]. Since then, many authors have written
about these distributions. In particular, Laha and Lukacs [6] has shown
that (1.1) is an infinitely divisible characteristic function. It follows
from (1.1) that the mean and the variance are, respectively,

p=pch , a*=pc(1+6% .
As noted in Feller [3], p. 503 and Lai and Vere-Jones [8], Meixner
hypergeometric distributions exhibit some curious properties. A brief
survey of this family of distributions was given in Lai [7].
The characteristic function of a gamma distribution is given by
(1.3) f@)={1—1it/2}*, —oo<t<oo, 2,p>0
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whereas the characteristic function of a negative binomial is given by
(1.4) FO={pl—ge?)Y, —oo<i<oo
where

0>0, 0<p<l and q=1-p.

Unlike the Meixner hypergeometric distributions, both gamma and neg-
ative binomial are very well known and they can be characterized in
many ways (see Kagan ete. [5]).

All of these three families of distributions belong to Meixner class
of distributions (Lancaster [9]) which can also be characterized in many
ways, for examples, by the generating function of their orthogonal
polynomials (Meixer [10]), by the quadratic regression on the sample
mean (Laha and Lukacs [6]), by the Bhattacharya matrix (Shanbhag
[12] and [13]) and by conditional moments (Bolger and Harkness [2]).

2. Canonical measure and a characterization

Suppose f(t) is an infinitely divisible characteristic function such
that the distribution corresponding to f has a finite second movement.
Let ¢(t)=log f(t), then ¢(-) can be represented as

@.1) ¢(t)=r ‘3”"1;2“ SINT 4 M () + bt

where bt is the centering constant (Feller [3], p. 563), and M(-) is a
finite measure which is called the canonical measure (see Feller [3], pp.
558-563). We note that an infinitely divisible distribution is uniquely
determined by its canonical measure. It is easy to obtain, by differ-
entiating (2.1) with respect to ¢ twice, that

(2.2) —¢"(t)=S°° ¢t d M(x)

and to see that ¢''(t)/¢”(0) is a characteristic function of a probability
distribution (see Feller [3], p. 559), i.e.

(2.3) M(dx)=0"G(dx)

where G(-) is a probability distribution function and ¢ is the variance
that corresponds to f(¢).

THEOREM. Let f(t) be an infinitely divisible characteristic function
such that the second moment corresponding to it is finite. Let p and o
be the meam and the variance of the distribution corresponding to f(t).
Then, for some p>0, the canonical measure M(-) corresponding to f
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satisfies

(2.4) S: e dM@) = {f O}, —oco<t<oo
if and only if

(i) p—pa*=0  and

J@)={1—1tu/o}, —oo<t< oo

(tn which case f is gamma or comjugate gamma according as 72>0 or
ﬁ<0)! or v

(ii) ©r—pa’<0 and
f(t)={cosh (v B t/p)—i(u/v ) sinh (VB t/p)}*, —oo<t<oo,

where

‘szgz_pz
or
(iii) 1i—pd*>0 and
_pal @A) )
FB=e {1—((#"3)/(#'1-1))62"”"} ’ i<

with 2 such that 2p>0 and A*=p’—ps® (in which case f 1is, except for
scale and location changes, megative binomial or comjugate megative bi-
nomial according as p>0 or p<0).

PrOOF. Let ¢(t)=log f(t). It follows from (2.4) that
(2.5) — ") =a{S @)}

which is obviously equivalent to

2
(2.6) AL s opprzo, p>0
which is a second order differential equation with initial conditions f(0)
=1, f'(0)=tg. The solution of this initial value problem is a function
of ¢, ¢, and ¢*. Equation (2.6) implies that ¢(¢f) is differentiable any
number of times with respect to t. By differentiating (2.5) with re-
spect to £, we obtain

(2.7) ¢”’(t)=%¢’(t)¢"(t), —oco<t< oo

which is obviously equivalent to
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28) P O=2@Or+(E -],  —w<t<o.
e e

The solution ¢(t) of (2.8) is such that f(t)=exp {¢(t)}, —o<t<o is
given by

(1_7:t1“/9)_p if ,uz—-p02=0
(2.9) f(t)= {COSh(ﬁt/P)_’i(#/V-F)Sinh(«/_ﬁ_t/p)}'l’ if p’—pa’<0
it2 (22/(p+2)) ’ oo
Gt if o>

where 8 and 2 are as required by the theorem. The method of solu-
tion implies uniqueness if the solution exists; however the uniqueness
theorem of a normal system of ordinary differential equations (Birkoff
and Rota [1], pp. 108-109) also implies uniqueness of the solution in each
of the three cases in (2.9). Hence the ‘only if’ part of the theorem
follows. The ¢if’ part of the theorem is obvious.
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