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Summary

For a sequence of independent and identically distributed random
vectors, with finite moment of order less than or equal to the second,
the rate at which the deviation between the distribution functions of
the vectors of partial sums and maximums of partial sums is obtained
both when the sample size is fixed and when it is random, satisfying
certain regularity conditions. When the second moments exist the rate
is of order »~* (in the fixed sample size case). Two applications are
given, first, we compliment some recent work of Ahmad (1979, J. Mult:-
variate Anal., 9, 214-222) on rates of convergence for the vector of
maximum sums and second, we obtain rates of convergence of the con-
centration functions of maximum sums for both the fixed and random
sample size cases.

1. Introduction

Let Xi,---, X,,---, be a sequence of independent identically distrib-
uted k-dimensional random vectors such that E X;=x>0 (#>0 means
#:>0, 1=1,--+, k). Define

(L) 8=3 X,=(Spm---, Su) with Su=3X,, i=1,--,k,
Jj=1 j=t
and set
1.2) S¥=(max Sy;,- - -, max S,,)=(S¥,---, S£), say .
1sj/sn 1sjsn

It is well-known that if E X2<oo, 1=1,..+, %k, then
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1.3) A,,:sgp IP[S—nuScwwn,: -,

Sin—np S0/ 1 —0r(x)|— 0, as n—oo,
and
(L4  4f=sup|P[Sh—nuSoay/T, -,

Sk —nu S0 @/ 1—0r(x)|— 0, as n— oo,

where @;(-) denote the distribution function (d.f.) of a multivariate
normal variate with mean vector 0 and covariance matrix R, i.e., if
Z=(Z,--+, Z,) is the random vector with d.f. @4(-), then Var Z,=(R),
and Cov (Z;, Z,)=(R),; i#J, %, j=1,--+, k where (R);; denotes the (¢, )
element of R. Recently, Ahmad [1], developed the rates of conver-
gence of 4F in terms of those of 4,. Precisely, he showed that if 4,

—O(n~"?), then 4*=0(n""?), 0<3<1 and that if 3)n '*24,<co then
o n=1
SI 2% < oo, 0<3<1. In this second part the case =0 was left

unanswered. One immediate consequence of the first result reported
here is to find the answer.

The center of the proofs developed in Ahmad [1] is to obtain rates
of convergence of the deviation between the distribution function of
the vector of sums and the vector of maximum sums. Precisely, it is
proved that if E|X,[f*’<o0, 0<8Z1, 1=1,..+, k, then

(1.5) sup |P [S,=x]—P [S¥=x]|=0(n"""?), 0<o=1.

Thus it seemed natural to ask about the case when moments less than
or equal to the second are the only moments we can assume finite.
This is one of the questions we attempt to answer in the present in-
vestigation.

On the other hand, if we let {NV,} be a sequence of integer-valued
random variables not necessarily independent of {X,} and such that
(N,/n) converges in probability to a positive random variable N, inde-
pendent of {X,} and such that E (N)<oo, then it is possible to prove
that if {e,} is a sequence of real numbers such that e,=n"! for all
n=1, and that for some constant C, and C, the following condition
holds :

(i) P[IN,/N—1|>Cie,]=0(¢?), and
(i) P[N<Ci/ne,]=0(eY),
and if

ElXillz+5<oo ’ i=1”"7 k; 0<B§1!
then
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(1.6) sup [P [Sy, S#]—P[S%,50]|=0(c) ,  0<3s1.

A careful inspection of the proof of Theorem 2.2, to follow, reveals
that the same argument can be used to show (1.6) by an application
of Theorem 1 of Ahmad [1]. Thus our second goal is to deal with the
random size case when only E|X,|'"*<oo, 1=1,---, k and 0<a<1.

In Section 3 two applications are presented, first we use Theorem
2.1 to show that if ﬁ‘.ln“d,,<oo, then i}n"d;*%oo, and in the second

application we obtain rates of convergence of the concentration func-
tion of the maximum of partial sums (we discuss the case k=1), both
for fixed and random sample sizes.

2. Main results

THEOREM 2.1. Let {X,} be a sequence of iid ramdom wvectors such
that E X;=p>0. If E|X,—pl't*<oco for some 0<a=x1, 1=1,2,---,k,
then

(2.1) sup |P[S,<x]—P [S*< x]|=0(n-d+) |

Proor. Clearly, for any x,
2.2) PIS,.=x]-P[S;=x]
=P |S,=x, U (Sh>a} |2 PIS.<x, St>al

i=
k

éé [Smsxu Szn>x ]’:Z { [Sin xi]_P [S:knéxz]} .

Thus it suffices to show that if E|X,—p,["**<oo, then supIP[Sm_x]

—P[St=x]|=0(m "), 4=1,2,.--, k. With hopefully no confusion
we shall drop the suffix ¢+ from now on. Let a,=nV¥!"*®,

(2.3) P[S.=2]-P[S¥=x]
=P[S,Zx, S}>x]
<P[S.<z, S}>=z, S}—S,<a,]+P[SF—S,=a,]
<P[r—a,<S,<2]+P[SF—S,=a,]
=Q(S, a.)+P[SF—S,za,],

where Q(¢, x)=sup P[2<&=z+x] is the concentration function of the

random variable &. Petrov [3] proved that if {X,} are nondegenerate,
then Q(S,, ©)<K((x+1)/¢/7) for all x=0, and all n=1, where K is a
positive constant independent of » and x. Thus
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(2.4) Q(S,, a,)<K lj’_‘}n < K210+ — Kpel2dte
Next, let us evaluate an upper bound for P[S¥—S,=a,].
(2.5) P[S¥—S8,za.]
=P[max {(—-X;—X;— - —X,), (= X3— -+ —X,),"- -,
(_'Xn)9 0} ga’n]
=P[max {(Yi+ Yo+ +Y,), i+ Yo+ +Y,0), -+,
(Yy), 0} =a,]
<P[max {0, Y}, (Y1+Y3), -+, Y1+ Yo+ - +Y,)} =a,]

=P[max T,=a,], say
1Sj=n

ég P[maX{Tpk+lr' "y }Za’n]

Pi+1

i
where Yj:‘—Xn—j+h Tj:?-—;l lfp .7=11"', n, 1:p0<pl<p2<"‘<pm—l<pm

=n and m=m(n) are integers such that p,=[a,] and p,=2""[a,] with
[#] denoting the largest integer less than or equal to z, and m is such
that 2" %, <n<2""'a,. Next, note that

(2.6) P[max{T, i, -+, Ty, } =0,

=P[max {|T, —E T,,kHl +|T pkﬂ ET, l}ze.—ET,]
gP [max {l Tl E Tll’ lTPk+1 Pk+1|} Za’ Pk]
é(aﬂ__‘_pk#)—(l"’ﬂ) E [I Tpk+1 E Tpk+1l1+a

P,
< (@t Dep)4*C, 3 E|Y,—E Y|+
=1

= Ckaplcﬂl(an'{“pxl‘)(lh) ’

where the first inequality is obtained since E T,=—mnu,<0, the second
follows since {|T,—E T,['**}z, is a sequence of submartingales, and the
third inequality follows from a result of Von Bahr and Esseen [4], with
C, and C* positive constants independent of n. Hence from (2.5) and
(2.6) it follows that,

~ m-—1 ~ P m—1
2.1 P[Sr—8,=2a,]=C, Pest scﬂ[ A pm]
(2.7) [ za,]=C, % oy =Ce e T Z

=0 B+ 8 )

<Clla] {142 S 2ow]
k=1
=Cla.]™, say.

Thus the theorem is proved.
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A random sum version of Theorem 2.1 is given next.

THEOREM 2.2. Let {X,} be a sequence of iid random vectors such
that E X;=p>0 and assume that E|X,—p,[t*<oo, i=1,2,--, k, for
some 0<a=<1. Further, let {N,} be a sequence of integer-valued random
variables (not necessarily independent of the {X.}) such that N,/n con-
verges in probability to a positive random variable N independent of the
X.’s. Assume that E (N)<oo and that there exists positive constants C,
and C, and a sequence {e,} of reals such that,

(i) e,2n! and ¢,—0 as n— co.

(ii) P[IN,/[nN1—1|>Cie, ] =0(e2/**+®), where [x] denote the largest in-
teger less than or equal to .

(ili) P[N<Cy/ne,|=0(ez/*4+2),

Then

(2.8) sup |P [Sy, <x]—P [S§, <x]|=0(ei**+”) .

PrOOF. Again as in Theorem 2.1 it suffices to prove the theorem
for the univariate case. First we show that for any real z,

(2.9) P [Stavia+ o,y =21 =P [Stamas o, n=x] =0(ei24+) |
Since N is independent of the X’s we obtain from Condition (iii) that
(2.10) P[Sima+cyem=x]—P [Sivia+ e =7]
=P [Stamiar ;o= Stamiar o >2]
= ﬁl P[S,<z, S¥>x] P[[RN](1+Cie)]=1]
SP[nN<Cy/e,(1+Cie,)]
+ 3 PISis%, §t>a] P[[N1(1+Ce)l=l]

1=[Cy/e,)

SPIN<Cfne,]+ 3 O@*+) P[[nN](1+Cien)]=1]
— 0(52/2(1+n)) +O(€;/2(l+i))n .

Let I,={k|[nN](1—Cie,)<k<[nN](1+C,e,)}. Note that P[N,¢I]=
O(e;/***),  Thus for any real number z,

(2.11) P[Sy,sa]—P[S} <«]
=P[Sy <=, S¥ >x]<P[Sy =2, S} >, N,c L]+P[N, ¢ L]
<P [Szv'n§x, S;'Gngx, N, € I»]'I'O(e;/m""") .

Define the integer-valued random variables L,=[[nN](1—Cie,)] and
M,=[[nN](1+Cie,)]. Then
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(2.12)  P[Sy =w, S} >z, N,cI,]
<P[{S. <%, St >x}U---U{Sy,<w, S§ >x}]
=33 P[[nN1=1] P [{Stt-0,0,n S -0, > )
U+ U{Sua+o =2 Sfiaso,mn>a}]

oo

<P[N<(Cyne,)] +t .2, F [([rN]=I]
[2(1+Cqe)] e
. P[S.=x, S¥>7]
E=[1A=Cyep)]
SO(E9)+ 3 (2Cie) PIInNI=U0(HES, )
=LUg/ e,
where the second term of the last upper bound follows from Theorem
1 above. Now if [>[Cy/e,], then I(1—Ce,)>Cn for some positive con-
stant C. Hence ¢,4_¢,,=(Cn)™" and the second term in the last upper
bound of (2.12) is less than or equal to

(2.13) Cn-en+9e, B ([RN]) =0(e5*) .

The proof of the theorem is now complete.

3. Two applications

(I) Rates of convergence for the vector of maximum sum: In the
following theorem we employ Theorem 2.1 to complete some recent re-
sults reported in Ahmad [1] concerning the rates of convergence of the
vector of maximum sums. Assume that E|X, <o, 1=1,.--, k.

THEOREM 3.1. (i) If 4,=0(n""*), then 4¥=0(n""*) for all 0<3
<1.

(il) If SIn%24,<oco, then 33 n ""4%< oo, for all 0<3<1.
n=1 n=1

PrOOF. Parts (i) and (ii) for 0<3<1 are given in Theorems 1 and
2 of Ahmad [1]. Thus we only need to prove Part (ii) for d=0. As
in Ahmad [1] we need only to show that for all x

(3.1) i‘ln‘l{P [S,=x]—P[Sf=x]}<co .
But since E|X,,'<o, then by Theorem 2.1, for all x

3.2) P[S,=x]-P[Sr=x]=0(n"") .

Hence

(83 X a{P[S,sx]-P[Stsx])
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¥ oo
<3\ (PIS,S*-PISIS*} +C_ 53 not¥<oo .
n=1 n=Ny+1

Thus the theorem is proved.

(II) Rates of comvergence of the concentration function of maxi-
mum sum : In this application we assume that X,,- .., X, are univariate.
The results apply to the multivariate case without difficulty. Recall
the definition of the concentration function of a random variable X;

J
QX, x)=sup P[y< X<x+y], ©=0. Let S¥=maxS; with §;=>X,, 5
v 1s/sn l=1
=1,--+,n. We seek rates at which Q(S¥, x) and Q(S% , #) diminish to
0 as n—oo. Although the rates we obtain below are not as good as
those of S, (of order »~?) itself we believe that they are new and
hope that they will stimulate interest for further improvements.

THEOREM 3.2. If Q(S,, 2)=0(n""*) and if E|X["*<co, then for
any 0<asl

(3.4) Q(S¥, 2)=0(n~r¢+) |
ProoF. Note that
(8.5)  Q(S¥, v)=sup|P[S¥=a+y]-P[SF=yl|
§s1:1p {P[S;=2+y]-P[St=z+yl}
+sup {P[S.=y]-P[SF=y]} +Q(S, =)
SO(n~o )+ O(n~ 2+ 2) L O(n~ ) =0(n~*24+2)

by an application of Theorem 2.1 and using the assumption that Q(S,, x)
=0(n"*).

Note that a sufficient condition for Q(S,, x)=0(n"'?), is that, see
Petrov [3], X be nondegenerate. Next, we give a random sample size
version of the above result using Theorem 2.2.

THEOREM 3.3. If Q(Sy, x)=0(e*), if E|X||'**<oo, and if {N,}
satisfy the conditions of Theorem 2.2, then for any 0<a=1,

(8.6) Q(S%,, 2)=0(e*"*) .
PrROOF. Again we easily see that
Q(S%, z)=sup {P [Sy,=z+y]—P[S§,=z+yl}

+ {P[Sy,=2]—P[S¥ =]} +Q(Sy,, ®)
= 0(3;;/2(1+a)) + O(e;',/z‘”"’) + O(ei,/’) — O(e;”/z‘”“’) ’
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by an application of Theorem 2.2 and the assumption that Q(Sy,, )=
O(e¥?). ’

We remark here that Ahmad [2] has recently shown that under

the conditions of Theorem 2.2 concerning N,, if Q(S,, x)=0(n""2), then
Q(Sy,, ©)=0(e?), then, e.g., if X is nondegenerate we have Q(Sy,, x)
=0(e*) and thus Theorem 8.2 applies.
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