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Summary

The rates at which integrated mean square and mean squre errors
of nonparametric density estimation by orthogonal series method for
sequences of strictly stationary strong mixing random variables are
obtained. These rates are better than those known to hold for the
independent case and they are shown to hold for Markov processes.
In fact our results when specialized to the independent case are im-
provements over previously known results of Schwartz (1967, Ann.
Math. Statist., 38, 1262-1265). An extension of the results to estima-
tion of the bivariate density is also given.

1. Introduction

Density estimation by orthogonal series method was first discussed
by Cencov [2] and later by Schwartz [6], Kronmal and Tarter [5], and
Watson [8]. Let f be a probability density function (p.d.f.) and as-
sume that it is square integrable. Thus f(x) can be expanded by or-
thogonal series, viz.,

(1) f@)=30,6),

where ﬂjzg f(x)¢,(x)dx, 7=1,2,.-- and {¢,(-)} is an orthonormal basis

of f(x). A special choice of {¢,(-)} that is popular is the normalized
Hermite functions;
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1.2) $,(0)=(2'j!x"?) e " H(x) ,

where H,(x) is the jth Hermite polynomial defined by :
d _ .
—(—1) z2 — cen
1.3) H(x)=(-1) e”(--dxj e ) , 7=0,1,2,

For other choices of ¢,(x), =0, see Kronmal and Tarter [5]. Note
that for ¢,(x) defined in (1.2) we have (see Szegé [7], p. 242) that |¢,(x)]|
<Cy(7+1)""* on (—oo, 00) and |¢,(x)|<Cy(7+1)""* on a closed bounded
interval [—M, M] such that f(x)=0 for all x¢[—M, M]. Thus it is
reasonable to assume throughout this paper that for any orthonormal
basis {#,(:)} used in (1.1),

(1.4) |¢,(x)|<C(5+1)7" for some %>y_>__0 and C>0 a constant.

Note also that the special case y=0 is a customary assumption.

Let {X,} be a sequence of random variables with common marginal
p.d.f. f(x) and common bivariate p.d.f. g(x,, x,) and assume that f(x)
and g(x, ;) are square integrable, so that (1.1) holds for f(x) and that

(1.5) g(x, xz)‘—‘% jilo"mbu'(% ) ,

where BH.=SS 9(xy, ), (24, X)dwdx, and {¢, (2, 2;)} an orthonormal

basis of g(x, x,).
Note that since {¢,(x;):$,«(2,)} from an orthonormal basis over R? for
g(x,, ;) then an example of ¢, (%, &;) IS ¢,(®,) - $x(%2), 5, 7¥=0,1,2, - -.
An unbiased estimate of ¢; is given by

(1.6) éj=n—1é¢j(X¢), 7=0,1,2,--,
and thus an estimate of f(x) may be given by:

A q(n) A
7 f@)=3 6.,

where g(n) is an integer-valued function of n such that g(n) — oo as
n— oco. In a similar fashion an unbiased estimate of 3,;. is given by:

(1.8) 3“'=,n—1 lZ‘lzl ;X Xi41)

and hence an estimate of g(x;, x;) may be given by:
N q,(n) go(n)
(1.9) 9y, ;)= PN L G A

J=0 j*=0

where ¢, (n) — oo as m— oo, i=1, 2, are integer-valued functions of =.
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Throughout this paper we shall assume that g(#)/n — 0 and g¢,(n)/n — 0,
t=1,2, as m — co. We shall assume that

(1.10) [ (21, )| SC(F+1)71(5*+1)"2 for some

%>T520, i=1, 21 .7.9 j*=0’ 1, 2, MY

The above assumption is motivated by the special choice ¢,,.(x;, z,)=
¢,(®,)p (%), since in this case (in view of (1.4)) |¢, (2, 2)|SC(5+1)7-

G*+1)~, %>r_2_0-

When {X,} are independent and identically distributed (iid) random
variables with p.d.f. f(x), Schwartz [6] proved that under certain con-
ditions (see his Theorems 1 and 2),

(L.11) E| 1f@)— f(o)da=0(n=-17),
whenever ¢(n)=0(n"""), r=3, and also that

(1.12) E [f(%)— f(@)F=0n""">"),

whenever ¢%(n)/n — 0, and ¢q(n)=0(n"""), r=38.

The purpose of the present investigation is to derive better rates
than those given in (1.10) and (1.11) not only when the observations
are independent but also when they are taken from a strictly station-
ary strong mixing process. We also obtain the corresponding rates for
g(xy, ;). This improvement is due basically to the better assumption
(1.4) than that used by Schwartz [6]. The bivariate case we tackle
gives us a great insight into the performance of the orthogonal series
method of density estimation in higher dimensions, a problem that is
not heavily investigated in the literature.

Assume that {X,} is a strictly stationary strong mixing sequence
of random variables having square integrable marginal p.d.f. f(x) and

bivariate p.d.f. g(x;, ;) and consider estimating these p.d.f. by f(a:)
and g(x;, «;) given in (1.7) and (1.9) respectively. Recall that (cf. Ahmad
[1] or Ibragimov [4]) a sequence of random variables {X,} is said to be
strictly stationary if the joint distribution of (X, 4 -+, X, i) is inde-
pendent of k, for every k=1 and also recall that a sequence {X,} of
random variables is said to be strong mixing with mixing numbers

{am)} if
(1.13) |P (AB)—P (A) P (B)|=ea(n),

for any events A € F(1, m) and Be F(m+n, ) with F(a, b) denoting
the o-field generated by X,, ---, X, for all integers a<b. Strong mix-
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ing sequence includes many special cases, e.g. Markov dependence and
m-dependence.

In Section 2, bounds on Eg[f(x)—f(x)]zdx and E[ f(x)— f(@)]* are
developed when {X,} is a strictly stationary strong mixing sequence and
in Section 8 the corresponding results for E SS [g(xy, 25)—g(wy, x,))*d; dev,

and E [g(x,, %) —g(2, 2,)]* are developed.

Note that conditions under which f(x) is strongly consistent have
been recently given by Ahmad [1]. Analogous results for §(x;, x;) may
be developed similarly. Demonstrating the asymptotic normality of

F(x) and §(x,, x,) and other concluding remarks, are embodied in Sec-
tion 4.

2. Mean square properties of the marginal density
THEOREM 2.1. Assume that f(x) is square integrable, g(n)in — 0 as
n—oo and 3l a(n)<oco, then ES[f(x)—f(x)]”da:—»O as m—oco. If

Sfurther i 03=0(q~"*'7%), for some integer r>0 then
i 1

=q+

(21) E | /@)~ f@Vdz=0(1+-r),
whenever q(n)=0n"") and =0 s such that |¢,(x)|<C(5+1)"" for all j
=0,1,2, ---.

Remark 2.1. The condition i 03=0(q~"*'"%) for some integer r>
J 1

=g+

0 and some %>7’_>—_0 is satisfied when the coefficients in the expansion

of f(x) in (1.1) are the Hermite polynomials, provided that G (x)=

exp (x2/2)_&d;[exp(—x2/2)- f(x)] is square integrable. To see this; note
xr

that BFS G (x)-¢,(x)dx is such that 3 fj<oo, and also that by inte-
J
gration by parts

(2.2) B;=(25)""(2j —2)"*- - - (2] —2r+2)""0,_, .

Thus f} 0 < f] B (20)"<(29+1)"" i B3=0(¢""), which is more than
J=q+1 J=q+1 J=q+r+1

we need.

In general, a sufficient condition for §‘_, 05=0(q""*'"¥) is that |6,|=
J=q+1

O((j+1)"7*7) for all §=0,1, --- since in this caseji 0§§Cji (G+1) %
=q+1 =g+1
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< @ —r=2r —r—2r+1 =r+d-2n
_ngx do= —_—(r+z S@+ 17 =0 ).

PrROOF OF THEOREM 2.1. Write ¢(n)=gq, then
@3) E|f@-r@riz=E{[ 6,-0)8 )]s
+2E{[% (é,—ﬁ,)¢,(x); ) (o) de
+{[[ 32 080 d

q

=S E@,-0) | B@ds+ 3 6 | piwda

Q

=5 E(@,~0)'+ > 6,
J=q+1

since {¢,} is an orthonormal basis. But since {X,} are strictly stationary
(2.4) E(,—0,¢=Var(4,)
=(L) 3 Var X+ (Z) 53 Cov (8(X), (X))

( >Var ¢,(X1)+< )Z‘.(n k) Cov ($,(X.), ¢,(Xis1)) -

But since {¢,(X,)} are bounded and stationary strong mixing, cf. Re-
mark 1.1 of Ahmad [1], then it follows from Lemma 1.2 of Ibragimov

[4] that |Cov ($,(X0), ,(Xur)S Z‘Cj{;‘;?
y=0. Hence for all 7=0,1, 2,

for all j=0,1,2, ..., and some

; C 20,
. —A ) 1
@5 E@,-0)s e+ e o

G

S (n—Kjak)

C,
SOl e
Hence
2.6) S E@—0=S 3 G+ =G 14" avda].
i=0 n i=o0 n 1

But the integral part of the last upper bound is equal to:
[(g+1)"7/(1—27)]—[2r/(1—27)]=0(¢""™) ,

since % >r=0. Therefore,

jz';:) E (§,—6,)=0(n"'g""¥).
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But since Z 05=0(""*'"%) for some r>0, then we have
J=q+1

@7) E | 17@)— f@Pdo=C{L g,

which leads to the desired conclusion upon choosing ¢=0(n""). QED.
Remark 2.2. If we assume only that a(n)=O0(n"'), the bound in
(2.1) is not attainable but a weaker bound is possible, viz., in this case
(2.8) E S L @) — f @)Pde=0(n-+-'" In n) .
PrROOF OF REMARK 2.2. Proceed as in the proof of Theorem 2.1
but instead of (2.5) we get

C, C;,(l +1nn)
n(G+DP n(i+17

provided that a(n)=0(r"!) and n sufficiently large. Hence the term
In 7 must be subsequently added in (2.7) and the remark is proved.
QED.

2.9) E(§,—0,y< [1+2 (a)] ,

In the next theorem we present the rate at which the mean square
error diminishes to zero and again the result refines that of Schwartz
[6]. The assumptions imposed are somewhat stronger than those needed
for Theorem 2.1.

THEOREM 2.2. Assume that f(x) is continuous, of bounded varia-
tion, and square integrable. If ¢*(n)in—>0 as m— oo, and if i}a(n)

n=0

< oo, then E|[ f(x)— f@))E—0 as n— oo uniformly in x. If further
= 10,T=O(q"“) for some integer r>2 then
(2.10) E [£(z)— f(@)}!=0(n -+,
whenever q(n)=0(n"") and §>Tgo 18 such that |¢,(x)|<C(F+1)7" for all
j=0,1,2,-...

ProOF. Note that
(2.11) E [f(@)— f(@)F'=Var (f(z))+[E f(@)— F @)} .

We shall evaluate each of these terms separately. Since {X,} are strictly
stationary, then

(2.12) Var (f(z))=Var ( jﬁ é,.¢,(x)>
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=33 ¢i(s) Var (6)+2 5] 51 4,(#) $u(x) Cov (6, 6,)
=A,+B,, say.

Now, as in (2.5), above,

(2.13) A,SC 33 @) (G +1)) g% 26+
C a -2
A 2
n(g+1)" e

=0(n~'g'™),

where the last bound follows from (2.6) since 1—2y>0. But choosing
g=0(n"") we conclude that for sufficiently large =,

(2‘14) A":O(n—1+(l-47)/r)=O(n—1+(2—27)/r) .

Next,

(2.15) B.<C 5 5 (j+1)7(k+1)7"|Cov (4,, 6y)]

Now,

216)  |Cov (G, dl=n|Cov (21 4,X), 34X
<1t ST 33 |Cov (,(X), (X))

l 1 m=1

=n"*{ 31 Cov (#,(X), $:(X))|
+33 511Cov (3,(X0), (X))

+33 331Cov (4,(X:), (X))

i>m

<Cotn(i+1)"(k+ 1)
+2[ 33 (10 | (G + )G+ 1)1}

SO (G +1) e+ )7 (14 3 et |

= G
= (G + 1y (k+1y

where C, and C, are positive constants. Hence from (2.6) it follows
that

’

(2.17) Bn< I:Z (]+1) zr] _O(n—lqz 4r) O(n—lqz 27) O(n—l+(2 2r)/‘r)
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upon choosing ¢=0(nY7). Hence we obtain that
(2.18) Var (f(x))=0(n-1+24-1/r) |

for some y=0 and r>0 an integer.
Finally,

N o 2 oo 2
@19  [Ef@)-f@r=] 5 08| =Ca+1] 5 0,]
:O(q—r+2(l—r)) .
The desired conclusion now follows by taking ¢=0(n""). QED.

Remark 2.3. The condition [ > 01]2:0((1-”2), in Theorem 2.2 is
J=q+1

satisfied whenever the 6,’s are the Hermite polynomials. To see this,
note that

2 0;

j=q+1

(2.20)

é i lﬁjlécrq-r/“-l ’
J=q+1

as shown in Theorem 2 of Schwartz [6].

Remark 2.4. If we assume the weaker condition that a(n)=0(n"")
then the bound in (2.10) is not attainable but we get a weaker bound,
viz.,

(2.21) E [f(@)— f (@) =0+ Inm) .

The proof of this result follows from the fact that if a(n)=O0(rn"') then
in (2.16), we obtain

2.22) Cov (6, Bl <n {(G+1) 706+ 1)7[14 3 a(w)]
Chan
= ni+1y(k+1y’

since for n sufficiently large we have that éa(p)=0(ln n). Thus, B,
p=1
=0(n"1*=/" In )., Thus (2.20) follows from (2.21) and (2.19).

Remark 2.5. Consider the case when {X,} is a Markov process de-
fined on some probability space (R, $, P), where R is the real line, B
is the o-field of Borel subsets of R and P is a probability measure,
with stationary transition measure p(¢, A)=P [X,,, € A| X,=¢£] such that
p(+, A) is measurable for a fixed A and p(¢, -) a probability measure
on B for fixed £. Assume that {X,} satisfies Doeblin’s condition D,,
viz., there is a finite measure r on B with z(R)>0, an integer N=0
and >0 such that p®™ (¢, A)<1—e¢, if 7(A)<e and there is only one
ergodic set EC R with 7(E)>0 and this set contains no cyclically mov-
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ing subsets, where p™(-, .) is the m-step transition measure. Under
D, there exist positive constants r=1 and 0<p<1 and a unique sta-
tionary distribution =(-) such that |p™(¢, A)—n(4)|<rp", n=1. Note
that =(-) taken as initial distribution and p™(., -) together determine
a stationary Markov process (cf. Doob [3], p. 221). Suppose that p(¢, )
and #(-) are absolutely continuous with respect to Lebesgue measure
on (R, $#) with corresponding densities g(-, -) and f(.). If f(.) is
square integrable then it can be estimated by # (x) as (1.7). Note that
it follows that (cf. Doob [3], p. 222) the following is true; |Cov (¢:(X)),
¢ (Xi11)|S2r 0" E ¢4 X)) E ¢3(X))]V* for all ¢, j=0,1,:.-,¢q. Thus it is

obvious that in this case ia(n)<oo and Theorems 2.1 and 2.2 apply
n=0

to f(w). If {X,} are iid, then ia(n)<oo, since a(n)=0 for all n=1.
n=0

Thus Theorems 2.1 and 2.2 apply in this case as well, in which case
the bounds in (2.1) and (2.10) are improvements over those of Schwartz
[6], Theorems 1 and 2 where he has y=0.

3. Mean square properties of the bivariate density

The following two theorems are analogous results for g(x,, x,) to
Theorems 2.1 and 2.2.

THEOREM 3.1. Assume that g(x,, ;) s square integrable, q(n)/n —

0, 1=1,2 as n— oo, and éa(n)<oo, then ESS [9(2y, x;) —g(2y, T2)Fdx, da,

—0 as m—oo. If further i f} 0% p=0(qr VR H T gr T/ DHIInY - for

J=q1+1 j*=qy+1
some positive integers r, and r, then

@) E|| g, g, m)lde, day=0(u-tsa-immsa-uory

whenever q(n)=0(n"") and ;=0 are such that |¢;.(x;, )| SC(F+1)™"-
(j*_i_l).-r2 folr a'll jl j*=09 11 2’ ) /l:=1, 2-

Remark 3.1. Choosing ¢, ;(x;, ¥3)=¢;(x;) $,«(;), it follows that from
(1.4), |¢; iz, )| SC(H+1)7(*+1)77, %>r_2_0, a special case of the as-
sumptions of Theorem 3.1.

SKETCH OF PROOF. Write ¢,(n)=gq;, i=1, 2, then

Q@ 9 A
3.2) E (| 00 2)—0(0, Ve doi=3] R EG,—0,,0
S e

k=g;+1 k*=gq+1
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But as in Theorem 2.1 we have

c
(i +1)(g* 1)

(3.3) E (3;0—0;)'<

Thus

31

qf} E (31.1"‘311')2<—[E G+ 1)—%] [,;v;o (j*+1)-2r2:|

J 0]*-—

=0(n""gi*ng;™) .

But also since > 3 8%,.=0(gr TP+ "n. gy ra/D+-In) the desired conclu-
J=q1+1 j*=gqq+1

sion follows by taking ¢,=0(n'7), i=1, 2. QED.

Remark 3.2. The condition i i 02 . =0(qy TP HI . gy (/D HIn) i

F=arH1 §*=gy+1
satisfied if d,;, are the bivariate Hermite polynomials while a general
sufficient condition is that |3;;|=0((7+ 1)V 1. (%4 1)),

THEOREM 3.2. Assume that g(x,, x,) s continuous, of bounded varia-
tion, and square integrable. If gi(n)/n—0 as n— oo, 1=1,2 and if

2 a(n)< oo, then E [§(x;, 2;)—g(xy, 2:)]* — 0 as n— oo uniformly in (x,

xy). If further E Z 16”,|<O(q“'1/2’+2 @5 YV for some positive in-

J=ay+1 j*=qa+

tegers r, and r, then
(3.4) E [g(wn ) — g (2, xz)]z O(n—1+2<1 71)/rl+2(1-r2)/12)
whenever q.(n), 1=1, 2 and ¢,;(x,, ), J, 7*=1,2, -+ as in Theorem 3.1.

We note here that Remarks 2.2 and 2.3 have their counterparts
for g(xz,, x,) thus if a(n)=0(n"!) we arrive at the estimates in (3.1) and
(8.4) with the add factor (In n).

Remark 3.3. The condition 3 Ia,j.[SO(q‘"x/”“ g7 "¥»**) holds

JZaH gy
for the case when 4,,’s are the Hermite polynomials.

Remark 3.4. Recall the Markov process defined in Remark 2.4 and
let g(-, -) denote the joint p.d.f. Again in this case, 3} a(n)<co, and

then Theorems 3.1 and 3.2 apply.

We conclude this section by noticing that we can extend Theorems
3.1 and 3.2 to the case of multivariate p.d.f. g(x, ---, «;) (the pdf of
X, -++, X,). This extension is straightforward after one defines the
orthonormal basis for g(x;, ---, x,) and modifies the conditions of these
theorems accordingly.
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4. Concluding remarks

. ey (n) A n
(i) Writing Y,,,,c=j§0 ¢,(X)¢,(x), k=1, .-+, n, then f(a;):_n-l;:‘lyn’k,

{Yoi 1=k<n, n=1,2,-..} is an array of stationary strong mixing
bounded (with bound (1+¢(%))C) random variables. Further let W, ,=
(Y,..—EY,.)/(1+4g(n)), then EW,,=0 and |W,,|<C for some positive

constant C. If i‘, a(n)< oo, then it follows that (Theorem 1.6, Ibragi-
n=0
mov [4])

. F n 2
SRR
nl—I.E 1+q(n) kgl ¥

IR f@)—E @) S0 - 000)
as m— oo where @(-) is the standard normal df. Note that the con-
dition a(n)<m/n. logmn in Theorem 1.6 of Ibragimov [4] is not needed.

Similarly we can argue the asymptotic normality of §(x,, x,). Let
q1(n) q5(n)

U, = Z Z sbm(Xm X)), (21, %), then g(x,, 2,)=n" Z U, where {U,,,

lélcén, 'n 1,2,.--} is an array of stationary strong mixing bounded
(with bound (1+q1(n))(1+qz(n))C) random variables. Further, let V, =
=(U,«—E U, )/(1+¢,(n)) (1 +qyn)), then EV, =0 and |V, .|<C for some

Cc>0. If ia(n)<oo, then again we have
n=0

exists. Moreover, if ¢,>0, then P[

. J% n 2
E = g;
e R A
exists. Thus if ¢,>0, then
S . o R e
P[ a0 ey 0@ 2B i@, xz))gazx] O(z) asm—oo.

(ii) An application cited in Ahmad [1] for the estimate f(x) is to

use it in estimating the functional 4(f )_—_S Sfix)dx. Two estimates are
proposed, viz., zf(f)zs f(x)an(w), where Fn(x)=n“§‘_,I(Xk§x) is the
k=1

empirical distribution function and A( f)=S fz(x)dx. It is shown in Ah-
mad [1] that zf(f ) and 4(f) are strongly consistent (under certain con-

ditions), here we can evaluate the rate at which Elﬁ(f)—d( f)| and

E |4(f)—4(f)| converge to 0 as n— oo using Theorems 2.1 and 2.2.
To see this note that
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E |4(f)— 4()|<C{E"* [sup | f@)—E f(&)[I+sup |E f(@)— @)

+E [S f(x)dF, n(x)-g f@)F (x)]’}

— O(n—1/z+(1—r)/r) + O(,n—l/Z)
=O(n—1/2+(l~7)/r) ,

by Theorem 2.2, assuming its conditions hold. Next,

E|4(f)— 4)I<C{E | [f@)— f@)dw+ B [sup | (=) - F(@) I
=O(n—1+(1—2r)/1)+O(n—l/2+(l—r)/r)
=0(n-1rra-viry |

again by application of Theorems 2.1 and 2.2. Hence the two estimates
achieve the same rate of L,-consistency.
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