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Summary

In this paper the nonparametric several sample scale problem is
considered and some tests are proposed for the hypothesis of homoge-
neity versus ordered alternatives. These tests are based on statistics
that are weighted linear combinations of Sugiura (1965, Osaka J. Math.,
2, 385-426) type statistics proposed for testing homogeneity of scale
against the omnibus alternative. For each class of test statistics sug-
gested, the member with maximum Pitman efficiency is identified. The
optimal statistics are compared with their parametric and nonparametric
competitors.

1. Introduction

Let X;,, j=1,---,7n, be independent random variables distributed
according to the common cumulative distribution function F(x), where
(1.1) Fyx)=F((x—0,)]a;) ,

and 6, is the location parameter and o,>0 is the scale parameter (=
1,---,¢). The case o,=1 for every i=1,---,c corresponds to the sev-
eral sample location problem. Literature on nonparametric tests of
homogeneity against the ordered location alternatives for several sample
problem is quite extensive (e.g. [3], [4], [6], [7], [8]). Some of these
tests have been discussed in [2]. However, the problem of testing the
hypothesis of homogeneity of populations (where we assume that 6,=
0, i=1,---,c) against the ordered scale alternatives does not seem to
have received much attention. These hypotheses, which are of inter-
est in this paper, could be formally stated as follows:
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1.2) Hy: o,=0,=--- =0,
against the alternatives
(1‘3) III: Ulé‘hé"'éac ’

where at least one inequality is strict. We assume that 6,=6, i=1,
-++,¢ in (1.1) and when using ranks, without loss of generality we can
assume 6=0. Recently, Govindarajulu and Haller [6] proposed a class
of test statistics for testing H, versus H,, which are weighted sums of
rank statistics, the weights being optimal in the sense of Pitman ef-
ficiency. Some other tests for this problem such as a locally most
powerful rank test, a parametric test based on the “likelihood deriv-
ave” and a heuristic class of rank tests are due to Govindarajulu and
Gupta [5].

Our particular interest in this note is the work of Sugiura [10],
that proposes two statistics for testing the hypothesis of homogeneity
of scale against omnibus alternative. It is shown in this article that
a modification of Sugiura type statistics will yield a class of weighted
linear combination of statistics, that are sensitive to H,. The optimal
member (in the Pitman asymptotic efficiency sense) in the class of sta-
tistics considered are derived. It turns out that these statistics have
asymptotic efficiencies similar to those considered elsewhere.

2. Proposed class of test statistics
Define for i=1,---,¢

(2'1) ¢Ei)(Xlr Tty Xc)

(e rank g among s
0, otherwise ,

where 0=r7,s<c—1 except for (r,s)=(0,0) and (1,1), (K),=K(K—1)
<o (K—=7r+1), (K)=1, and

(2.2) ¢A Xy Xigse o5 Xy X.)
1, if Xy<Ximn<X,; or X< Xn< Xy
— for all k#7 and m=1,2;

0, otherwise .

Let

: nl nc .
(2'3) U(t)z(nl' : "nc)_1 E e E=1 ¢Et)(Xla11 tt Xcac) s

a;=1
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and

@y vo=[(3) (%) B B i X Xer Xer)

aj<py  ag<Be

where > ... 3} means the summation extending on all possible pairs
<y ae<Be
(d,, Bl) Such that 1§a,<ﬂ,§’nl fOl' 'l:=1,' <+, C.
Now if H, is true, the events that the random variable X; obtains
rank j among X,,---, X, for j=1,.--, ¢ are equally likely. Therefore

it readily follows that

i e :l : (j_l)r (j_l)s
(2.5) E [¢§ )(Xh ’ Xc)] ¢ jZ:l |: (6—1),. + (6—1), ] )
so that
) — 1 1
(2.6) E(U®)= 1 +————8+1 ,
since 3} (j—1),=()si/r+1, and
(D)) — 1
2.7 E(V )—————0(20_1) .

Motivated by the fact that if H, were true, we expect U® and V@
to increase with 4, we propose two class of statistics defined by

2.8) K=3aU®,
(2.9) K=31bV.

It is assumed that the weights a,(b;)) are not all equal and are real
constants. A particular member of the class of statistics K| (K,) is iden-
tified by specifying a, (b;), r and s. With each member of the class we
can associate a test of H, which rejects H, at a significance level a if
K, (K;) exceeds some predetermined constant Ki(a) (Kya)).

3. Asymptotic distributions
We first notice that U® (V) is a U-statistic corresponding to the

kernel ¢ (¢5°) generalized to the case of ¢ samples. Let N: =§cj n; tend
i=1

to infinity in such a way that n,/N—p,, where 0<p,<1, ¢=1,---,¢ are
constants. Then following [10], the c-dimensional statistics (U®,---,
U)(V®P,..., V), when properly standardized is distributed asymp-
totically according to c-variate normal distribution with mean vector
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zero and a certain covariance matrix. Thus the asymptotic normality
of K, (K;) is immediate, by noting that K, (K;) is a linear combination
of U (V™). 1t is easy to verify that under H,

° 1 1
3.1) E,(K)= ( )
(3.1) 10:9) iglai 'r+1+s+1

32 Vi()=|e20 ] S @ —ayp,
and

¢ BE=3b(m )

[4¢A2e—1,2c—1)7 & :
@4 Ve (K”_[ (c—1)¥(2c—1)¢ ] 2 (=0
where ca=3)a;, cb=3b,,
(3.5)  A(r,s)= r + s 2

Cr+1)(r+1F  @s+1)(+1F  (r+1)(s+1)
+2B(r+1,s+1),

B(p, q) is the usual Beta function.

4, Optimal choice of weights

In order to assess the merits of the class of test statistics proposed
here, the asymptotic efficiency will be computed relative to other known
parametric and nonparametric competitors. Towards this, we first dis-
cuss the efficacy of the proposed class of statistics and derive the opti-
mal weighting coefficients a,(b;) such that the corresponding Pitman
efficacy is maximized. We shall consider the following sequence of
“near” alternatives:

4.1) Hy: Fy(x)=F(x/(c+ N"'d,))

1=1,-.., ¢, where ¢ and d, are some real constants (not all d,’s are equal),
F is an absolutely continuous distribution function. Since (2.8) and
(2.9) remain invariant if all the variables X;;, 1=1,---,¢, j=1,---,n;

are subjected to a change of scale, without loss of generality we may
assume o=1. Further, we consider the equal sample case i.e., p,=1/c
is fixed, and the equally spaced scale alternatives of the type d,=1d, d>
0 for t=1,-.-,¢. We now require the following two lemmas, which
are relevant particular cases of results given in [10].
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LEMMA 4.1. Assume the sequence of distributions given by (4.1) of
independent random variables X;;, j=1,---,mn; for each index n=1,2,
«++, where n,=Np, with p, a positive number (0<p;<1), 1=1,2,.---,¢c.
Suppose further that F possess a continuous derivative f and there exists
a function g such that

Lirwm—rn|sow)  and |7 swrway<e.

If N=é n; and U'=[U®,.--, U], L=[1lix., then as N— oo, the limit-
=1

ing distribution of NYY(U—[1/(r+1)+1/(s+1)]L) is a c-variate normal
with mean vector p'=(uy,---, p.) and the variance-covariance matriz 2
:(o'ij)cxc: 'iv j=1, re, Gy where

(4.2) yi:(c—l)‘lc<i— "‘; 1 )d‘ll ,

1={"_wf@ (TF @I —d1- F@]1dF @),
and

oo d)

d:; is the usual Kronecker delta and A(r,s) is given by (3.5).

LEMMA 4.2. Let V'=[V®,...,V®]. Then under the assumptions
of Lemma 4.1, the limiting distribution of NYY(V—[e(2c—1)]"'L) is a
c-variate normal with mean vector p'=(py,- - -, t.) and covariance matrix

3= (G1;)cx. Where

40 j=2e—1)c3) (i— c’gl )dIz :

L=\" af@F@P—[1-Fe)*}dF @),
and
45) 5= 4AQ—1,20-1)¢ () 0

(c—1)"(2c—1)

Next we shall consider the problem of determining the optimal
weights a; (b;) associated with the class of statistics K| (K;). The follow-
ing theorem gives the optimal weights a, (b;)’s that maximize the effi-
cacy of the statistics K (Kj).

THEOREM 4.1. Under the Assumptions of Lemma 4.1 (4.2), the effi-
cacy of the test statistic K, (K,) is maximized if
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ai(bi)z(i— “2'1) . i=1,.-e,c.

PrROOF. We first recall that the efficacy of a test statistic Ty is
defined as

(4.6) e(Ty)=[p'(Tx)[0=0V/aTy) ,
where =dN~*, d>0. We have from (2.8) and (4.2),

The derivative of (4.7) with respect to 6, evaluated at §=0 is

2 s e+1
(4.8) e(c—1) Ela(z)(z— : )L.

From (3.2), (4.8) and (4.6) we obtain the efficacy of K, given by

I’'G

4.9) 6(Kl):m ,

where

[z a(i—(c+ 1)/2)]2

(4.10) G= -
21 (a;—a)’
In (4.9) we need to maximize only G since other factors do not depend
on a;,. Let us define a'=(ay,---,a,), ¥'=»1—(c+1)/2,---, c—(c+1)/2).
Further let M=(m,,)ex., %, 5=1,--+, ¢ where m;;=d,;,—1/c. Then G can
be written as (a'b)’fa’Ma. It is easily seen that M is singular and of
rank (c—1). Further observe that > m,;=> m;;=3>b;=0. We may
7 7 7

assume without loss of generality that a’J=0 for J=(1,1,---,1). Now
it is easy to verify the following: (i) a’b=alb, (ii) o’ Ma=a,M*a, where
at=(ay, -+, @y, bh=1—c¢,2—c¢,---,c—1—c) and M*=3,,+1, 1,5=1,---,
c¢—1. Clearly M* is positive definite. Thus we have G=(a'b)}/a’Ma=
(atby)/atM*a,. Now using a well known result in Matrix algebra (e.g.,
see [9], p. 48); we immediately obtain the optimal weights

(4.11) ai=<i—%1> . i=1,-.-,c,

which completes the proof of the theorem. The proof for the class K,
is exactly analogous. As an immediate consequence, we have the fol-
lowing corollary.
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COROLLARY 1. The optimum efficacy of K, (K;) with a;(b,)=(i—(c+
1)/2), is given by

= (@-1HI
(4.12) o K"‘m ,
(4.13) o(Ky)=—(¢=D@—1)L;

12A4(2¢—1, 2¢—1)

5. Efficiency comparisons and conclusion

In this section we shall compare the asymptotic efficiencies of tests
K, and K, relative to the parametric and nonparametric competitors.
If we let r=s=c—1 and r=s=2 in (2.1) then the corresponding sta-

tistics K; and K* can be considered as modified versions of the Bhapkar
and Deshpande [1] D statistic and the Sugiura [10] D, statistics suit-
able for testing H, versus H,. The asymptotic efficiencies of K, rela-
tive to K* can be shown to be the same as exhibited in Tables 6 through
10 of Sugiura [10].

As stated earlier Govindarajulu and Gupta [5] developed a locally
most powerful rank statistic S,y, a statistic S,y based on the “likeli-
hood derivative” and a class of weighted sum of Chernoff-Savage type
statistics S;y for testing H, versus H,. It can be seen that e(K*)=
15(02—1){8m x fz(x)[ZF(x)—l]dx}z, and K* is as efficient as the statistic
S;y, specialized to Mood type scores considered by Govindarajulu and
Gupta [5]. The efficacies of the statistics K*, S,y and S;, for Normal
(0,1) and Exponential (0, 1) error distributions are given by Table 2 of
Govindarajulu and Gupta [5]. The efficiencies of the test K, relative

Table 1 Asymptotic efficiency of K, relative to S,y

c 2 3 4 5 6 7 8 9 10
Normal 0.760 0.812 0.864 0.898 0.918 0.928 0.931 0.929 0.925
Double
Exponential 0.899 0.935 0.961 0.970 0.967 0.957 0.943 0.927 0.911

Exponential 0.784 0.834 0.885 0.913 0.930 0.936 0.936 0.936 0.924

Table 2 Asymptotic efficiency of K, relative to S,y

c 2 3 4 5 6 7 8 9 10
Normal 0.304 0.464 0.576 0.653 0.706 0.742 0.767 0.782 0.793
Double

Exponential 1.996 2.964 3.557 3.914 4.127 4.250 4.309 4.337 4.332

Exponential  0.320 0.486 0.602 0.677 0.730 0.764 0.786 0.804 0.808
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to S,y and S,y for Normal (0, 1), Exponential (0, 1) and Double Expo-
nential (0, 1) error distributions are given in Table 1 and Table 2 re-
spectively. Further it can be shown that the efficiency of K* relative
to S,y for these three distributions is respectively 0.760, 0.784 and 0.899.
From these values we can see that the test K, performs better than
the test K*. Further the K, test has reasonably good efficiency com-
pared to S;y, while it turns out to be considerably efficient as compared
to S,y, for double exponential residuals.
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