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1. Introduction

Consider a (p+1)x1 random vector <§> which follows a multi-

variate normal distribution where Y is a scalar and X is a pXx1 vector
(p=1). In estimating the population mean g, of Y, it is well known
that the precision of the estimator can be increased if X is used as
an auxiliary variable. In this paper, we shall consider the linear re-
gression estimator of g,. To use the regression estimator, we need to
know the population mean, g,, of X. In certain situations, an investi-
gator may have partial information about g,. In order to utilize this
partial information, the investigator can perform a preliminary test
about the hypothesis Hy: p,=p, versus H,: p,+ p, where g, is some
constant vector that he believes g, should be.

As an example consider the estimation of the average yield per
acre of a certain crop. It is known that the yield is highly correlated
with the moisture and nitrogen content of the soil. Hence these can
be used as the auxiliary variable X. The experimenter usually does
not know g, but from the amount of rainfall reported by the weather
bureau or other sources and from analysis by some soil scientist, he
believes that g, should be g, Once a preliminary sample is available,
the investigator may test H,. He then will use g, in the regression
estimator if H, is accepted, otherwise he uses the simple mean 7 to
estimate x,. The estimator resulting from this procedure is usually
referred to as a preliminary test estimator. Studies on the efficiency
of the preliminary test estimator show that in practice, it is desirable
to use the preliminary test estimator when the investigator’s prior in-
formation is reliable. Preliminary test estimator was first studied by
Bancroft [1] and later by Bennett [3], [4], Han [7], [8], Han and Ban-
croft [10], Kale and Bancroft [12], Kitagawa [13], Mosteller [15] and
others. It belongs to the area of inference based on conditional speci-
fication. A note and a bibliography on inference based on conditional
specification was compiled by Bancroft and Han [2].
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Suppose <§> is distributed as N(g, ¥), where p:(”" ), Y=

'z

<02 Z”). Let (Y, X, Xuiy -+, X,0)'s =1, -+, n, be a random sample
221 z'22

from N(g, ¥) and y:%ilYi, X’z—l-iiXi. If g, and ¥ are known,
i= n i=
then an unbiased estimator of p, is 7+ 235 (¢, —X) with variance

;1;{02—2'122}';2‘27,1}. If %):mz';sﬂ is considerably large, we have an

appreciable gain in precision. If g, is unknown but from certain sources,
the experimenter expects but is not certain that g,=g,, then he may
perform a preliminary test of H; and construct a regression estimator
depending on the result of this test. Without loss of generality we
let ¢#,=0. The preliminary test estimator is defined as

@—Elgzilf, if nf,z;gljéxz;,a y

(1.1) y*= _
7, if nX' 23 X>x.,

where #, is the 100(1—a) percentage point of the Chi-squared dis-
tribution with p degrees of freedom and « is the level of significance
of the preliminary test. Han [7] studied the estimator y* when p=1.
This paper considers the general case with p=1. The bias, mean
squared error (MSE) and relative efficiency of y* are derived in Sec-
tion 2.

We also consider a regression estimator of p, by using a shrunken
estimator of the form 7X, 0<7<1, for . when prior information that
p, is close to g, is available. For the case p=1, assuming a3, %, p
known, the shrunken regression estimator of p, is defined as, letting
#0:'09

(1.2) p=y—BrX
where g=22, and
(1.3) MSE (5)=E @—BrX—p)* .

Following Thompson [16], we find the optimal value of y which mini-
mizes (1.3). This yields the shrunken regression estimator for p=1 as

a Xo?

1-4 :y————ﬂi—‘——ﬁ— .

(1.4) 2 nXitol

The case p=2 can be treated similarly but the derivations are more
difficult. This case will not be treated here. For the case p=3, we

assume that ¥ is known and ;=1 and ¢*=1 without loss of generali-
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ty. Following James and Stein [11], we use X (1— p— 2_> as an esti-
nX'X

mator of g,. We then define the shrunken regression estimator for

p=3 as

. v p—2
(15) R

The MSE of g and z and the efficiency of the preliminary test esti-
mator, y*, relative to # and g are derived and discussed respectively
in Section 3.

2. Bias, MSE and relative efficiency of ¥*

Let c=y2, and A=[nX'3;'X: nX'3;'X<c] so that the rejection
region of the preliminary test is the complement A. The expected
value of »* can be written as

(2.1) E (y*)=E {(27—2'1227{2‘5()@} P(A)+E A P (4)
=E (»)— 22 E(X|A) P (4)
=l‘u+B1 .
To evaluate E (X |A) P (A), we express P (A) in terms of the non-

central Chi-squared distribution and then in terms of the normal dis-
tribution. Therefore we have

P (4)= So e 71!_<%>jhp+2,(t)dt ,

Jj=0

where h,,,,(-) is the density function of y}..,; and A=ngu 35'y,. Also
2 \ P - n -
P(A):S...S(7) PARE exp{—-E(X—p,)'Z'n‘(X— p,)}dx.
A

Differentiating the two expressions of P (A) with respect to g, and
equating the results, we find

(2.2) B,=—2%,3;' p.H,.(c; 2),

where H,.,(c;2) is the comulative distribution function of the non-
central Chi-squared distribution with p+2 degrees of freedom and
noncentrality parameter 2A.

As a partial check, when ¢=0, we always reject the null hypothesis
and use ¥ and B;=0. When ¢=o0, B,=—2%,2; ¢, which is the bias
of always using 7—3,37'X. Without loss of generality, we let X,=
I and ¢*=1. When p=1, since B, changes sign with ¥, and p,, we
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need only study the bias for p,=0 and p>0. The bias was also studied
by Han [7] who expressed it in terms of the cumulative distribution
function of the standard normal distribution. However the two ex-
pressions are equivalent (see Han [9]). The general behavior of —B,
is as follows. The bias is zero when g,=0. It is an increasing func-
tion of p but a decreasing function of a. For fixed n,, @« and p, the
bias increases from zero to a maximum and then decreases to zero as
. increases. The values of —+/n B, for p=2 and certain values of
Y, pvn and a are given in Table 1. The properties of the bias are
found to be identical with those recorded for p=1.

Table 1. Values of —v'n B; for p=2

a 05 .20 50

DA .5\ [—.5\ (.7 5\ (—.5\ /.7 .5\ [—.5\ (.7
(Y (20 I D)
(0, 0 0 0 0 0 0 0 0 0 0
(.5 .5) .37 .08 .52 .21 .04 .29 06 .01 .09
(1.0,1.0) .58 .12 .82 .27 .06 .38 07 .01 .10
1.5,1.5) .55 .11 .76 .19 .04 .27 .04 .01 .05
(2.0, 2.0) .34 .07 47 09 .02 .12 01 0 .02
(2.5,2.5) .14 .03 .19 .02 .01 .03 0 0 0
(3.0, 3.0) .04 .01 .05 0 0 .01 0 0 0

To obtain the MSE of 7*, we use the equation
(2.3) M,=MSE (*)=V (y*)+Bt.
By using a similar method for the bias, i.e. differentiating the two
expressions of P (A) twice, we can evaluate V (y*). We found that
@.4) My=>o(1+h],

where

hq:% —Z’lzz'z‘zlp,péz.lezme“(c; 1)—%21222_21221Hp+2(c; 2)

423,35 e, 25 E 0 Hy (e A)1 .
We now compare the preliminary test estimator, *, with the usual
estimator y. The relative efficiency of »* to ¥ is

_MSE@) _ 1
MSE (%) 1+h,

(2.5) e
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The selection of the level of the preliminary test such that the
relative efficiency is the largest when g, equals 0 and is at least as
large as some e, when p,#0 was first recommended by Han and
Bancroft [10]. The values of e.,. and e,;,, for p=1 are given in Han
[7]. The values of ¢, for p=2 are given in Table 2 for some choices
of X, p.¥n and a. The values of e, and e,, for some a, X,=(.5,
.5) and p=2 are given in Table 3 which also gives g, the value of
#. about which e,,, occurs (to accuracy within 0.05). We note that
—pf also gives the same values of e,,,. In general we observe from
the Tables that e, is maximum when g,=0 for fixed n, @ and X;;. €ner
is always an increasing function of the absolute value of any com-
ponents of ¥, and a decreasing function of a while e_,, is an increas-
ing function of a. g} decreases as a increases.

Table 2. Values of ¢; for p=2

@ .05 .20 .50
DI 5\ [—.5\ (.7 .5\ [—.5\ /.7 5\ /—.5\ (.7
(7Y (220 DD (DD
( 0, 0) 1.67 2.45 4.64 1.31 1.55 1.88 1.08 1.13 1.18
(.5 .5) 1.15 2.18 1.3¢ 1.05 1.43 1.10 1.01 1.10 1.01
(1.0,1.0) .67 1.67 .51 .77 1.23 .63 .92 1.05 .85
(1.5,1.5) 51 1.29 .35 .71 1.08 .56 .92 1.02 .8
(2.0, 2.0) .53 1.09 .36 .79 1.02 .66 .96 1.00 .92
(2.5,2.5) .67 1.02 .51 .91 1.00 .84 .99 1.b0 .98
(3.0,3.0) .86 1.00 .76 .98 1.00 .96 1.00 1.00 1.00

Table 3. Values of ey, and ey,, for p=2, F;=(.5, .5)

a .05 .10 .20 .30 .40 .50
€max 1.67 1.50 1.31 1.20 1.13 1.08
€min .50 .59 .71 .79 .86 91
o () (e () G G5 Q)

3. MSE and relative efficiencies of 2 and #

We define the MSE of g as
ol BXe: ]2
@)  M=E[7 e

[ TP { X } - { X }
e o] nX*+a?
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Xz
The efficiency of the preliminary test estimator #* relative to the

shrunken regression estimator x is

(3.2) o="5E(@) _M,
MSE @9 M

+p0iE

Without loss of generality, we let s2=0¢?=1 in the computation of e;.
The Gauss-Hermite quadrature is used to evaluate the above expected
values. For the relevant approximation used, one is referred to Davis
and Polonsky [6]. The values of ¢, are given in Table 4 for =9 and
certain choices of g, p, and a. From the table, we observe that e,
has a maximum greater than unity at x,=0. For fixed =, pg, and q,
e, is generally a decreasing function of p and for fixed n, g, and p, e,
is also a decreasing function of @. For fixed =, p and e, e, first de-
creases to a minimum, then increases to above unity and then finally
drops back to unity as g, increases.

Table 4. Values of e; for n=9

a .05 .10 .25
o 7 .9 7 .9 7 .9
Uz
0 1.143  1.367 1.019  1.042 .855  .733
.3 .83  .727 822 .716 834  .733
.6 644 533 732 .632 897  .845
.9 703 .606 844 778 1.025  1.039
1.6 1.048 1.078 1.058  1.096 1.062 1.103
2.5 1.026  1.043 1.026  1.043 1.026  1.043

We now consider the MSE of z when p=38, F,,=1 and ¢*=1 which is

- S=Elz—3.x2=2 _, T
(3.3) M;=MSE (7)=B [7-ZuX-L=2 —p

=Ltm,
n
where

hy=n{2(p—2)2u[Dp;— T2+ (p—2)'21,GZ 1y} ,
with

D=”IE<p+12K> ’
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1 1 1
T=_{E< >I E(—————) s é},
n p+2K + p+2K+2 s

1 1 1
G:_{E[ }I+E[ ]n , ;},
n U L (p+2K)(p+2K—2) (p+2K)(p+2K+2)) F
and K has a Poisson distribution with mean %‘uéyz.
The efficiency of 7* relative to g is

_ MSE (i) _ 1+h,
MSE (7*) 14k

3

where h, is given in (2.4). Table 5 gives the values of e¢; for p=4.
It is easily seen that e, depends on the parameter values through 2,
d,=3,%y and d,=+n Z,p, only. Therefore the table is given for sev-
eral values of d;, d;, 2 and «. The expectations in D, T and G are
obtained by the method given in Chao and Straderman [5] and Lepage
[14]. For example, if K has a Poisson distribution with mean m, then

L 1—em  if 4=1
m

Blara) =] L] (22) - 5(21) " fru-a]
if A=2,38, .-

and

Table 5. Values of e¢; for p=4

a

dy d; 2
0.06 0.10 0.25
0.5 0.5 0.1 1.05 1.01 0.94
0.2 1.05 1.00 0.93
0.5 1.03 0.98 0.92
1.0 1.00 0.96 0.90
2.0 097 0.93 0.8
5.0 092 0.89 0.85
10.0 0.90 0.89 0.88
20,0 0.92 0.92 0.92
30,0 0.94 0.94 0.94
1.0 0.5 0.1 1.53 1.25  0.91
0.2 1.50 1.22  0.90
0.5 1.42 1.16 0.86
1.0 1.31 1.08 0.81
2.0 1.15 0.96 0.76
5.0 0.93 0.8 0.72
10.0 0.84 0.79 0.75
20.0 0.8 0.84 0.84
30.0 0.88 0.88 0.88
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B [(K+A)(II{+A-|-1) ]zF(A)K:ﬁL)Ae-mUE; (%)IGf F(A"Hl)]
where G,=E <T{+_AI—TH>

We observe from Table 5 (and tables not presented here) that the
values of ¢; are large when 1 is small, i.e. when U is close to the
null value. The efficiency decreases when 1 increases and falls below
unity before it increases. When 2 tends to infinity the efficiency goes
to one since both estimators reduce to . After studying the behavior
of e;, the conclusion is that if the investigator is certain that 2o 1S
close to the null value, he should use the preliminary test estimator;
otherwise the shrunken regression estimator should be used.

We wish to thank the referee for his valuable comments.
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