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This paper first develops a valid method for approximations to the
pdf’s and cdf’s of GLSE in linear models and, applying this method to
the Zellner estimator with an unrestricted sample covariance in the
seemingly unrelated regression model, obtains an approximate pdf with
a bound of order »%* and an approximate covariance matrix with a
bound of order n73.

1. Introduction and summary

The validity of Edgeworth type expansions is being recently focus-
sed upon and some general theorems are being established in mathe-
matical statistics and applied fields. Among others, with a clear view
over this field, Bhattacharya and Ghosh [1] gave a neat condition for
the validity of a formal Edgeworth expansion in the i.i.d. case. Feller
[4] also provided a weak condition for the validity in the i.i.d. case.
In non i.i.d. but univariate cases, Sargan [12] and Philips [9] derived
conditions for the validity in general settings for econometric applica-
tions. Further, Durbin [3] extended Feller’s result to a non i.i.d. case
and applied it to a time series model. Other references are found in
these papers. In this paper, taking a full advantage of a special struc-
ture of the model concerned here, we give a bound for approximation
with the validity. To state our model, let

(1.1) y=Xp+u with u~ N(0, 2)

be a linear normal regression model where X is an nxk fixed matrix
of rank k& and 2¢€ S(n). Here S(n) denotes the set of all positive defi-
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oka and anonymous referee for their invaluable comments and suggestions.
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nite matrices. By a GLSE we shall mean an estimator of 8 of the
form

(1.2) B=RD)=(X'0'X)'X'Q "y

where £ is an estimator of 2 and 2 may be estimated based on a dif-
ferent sample. When 2 is of certain structure, estimators of this form
are often used in practice, for example in the SUR (seemingly unre-
lated regression) model where 2=3®1I, or in a heteroscedastic model
where £ is a diagonal matrix, or in a serially correlated model where
2 is a function of variance and correlation. However, our method
limits its applications to the case that the following assumption holds:

(1.3) f1e~N(p L H)
where
(1.4) H=n(X'0"'X)"'X'0100"' X(X' 21 X))

and “ ﬁ|Q~ ” reads “ ,B given £ is distributed as”. When 2 is esti-
mated independently of y, (1.8) is always satisfied. Further, as is well
known, certain GLSE’s in the SUR model and a heteroscedastic model
also satisfy (1.8). But the GLSE’s in serially correlated models do not
satisfy (1.3) except the case that an independent sample for estimation
of 2 is available. Based on this model, we consider the problems of
approximations to the pdf and moments of

(1.5) d=yvT (f—B)=vT (X' X)' X'Q'u .

In Section 2, after some remarks on the usual approach to such a
problem, a bound for the difference between the pdf, say f(x), of d
in (1.5) and its approximation, say fy(x), is evaluated in the form

(1.6) sup | f(@)—fu(@)|=K[n

where the constant K depends on £. In Section 3, approximations to
the moments of d are treated. It is noted that throughout this paper,

the sample size » (and the sample size, say n/, for Qif 2 is independ-
ently estimated) is (are) arbitrarily fixed, and so the results hold for
any n (n') although too small sample makes the approxirhations mean-
ingless. To relate our results to those so far obtained, we sometimes
use the notation O(-) to show the orders of approximations, but for
example, by Z,=0(n"") we simply mean that n’Z, is bounded as a
function of n, or |[n"Z,|<K for all n, and we never mean that = is
large.
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In Section 4, the above method is applied to the UZE (Zellner esti-
mator with the unrestricted covariance matrix) in the 2 equations SUR
model, and the approximate covariance matrix up to O(n~?) with a
bound of order n™® and an approximate pdf up to O(n™') with a bound
of order n~% are obtained. In addition, an approximate cdf of a linear
combination of the UZE is also obtained with a bound of order n~2.
For asymptotic covariance matrices of the UZE and the RZE (Zellner
estimator with the restricted sample covariance matrix), Srivastava [13]
gave the asymptotic covariance matrix of the RZE up to O(n™') in
terms of in-probability concept (see Section 3 for the exact meaning),
and interestingly pointed out the equivalence between the asymptotic
covariance matrices up to O(n™') of the RZE and UZE. This equiv-
alence is explicitly confirmed by Hall [5] and Srivastava and Upadhyaya
[156]. Consequently, to compare these two estimators in covariance
matrices, higher order approximations are necessary. The approximate
covariance matrix derived here will serve for this purpose as well as
it approximates the exact covariance matrix more closely. A different
comparison between the UZE and the RZE has been made by Revankar
[11], while Kunitomo [8] has derived the exact covariance matrix of
the UZE, which seems analytically intractable for such comparisons.
Further, some arguments on approximations to covariance matrices are
found in Taylor [16] where a 2SAE in a heteroscedastic model is treated.

For approximations to the cdf of d in the SUR model, Philips [10]
derived an approximate cdf (cumulative distribution function) of a linear
combination of the elements of the d where the validity is based on
Sargan [12]. His result is effective only in a neighbourhood of the origin
and seems to need that n is large enough to satisfy the conditions for
the validity. On the other hand, not only our approximation to the
cdf of d is effective globally but also a uniform bound for the approxi-
mation is given as a function of n. Further, in his case only a uni-
variate case can be treated, but in this paper we also give a uniform
approximation to the joint pdf of the elements of d. Finally, we re-
mark that the method and analyses developed here are applicable to a
2SAE in a heteroscedastic model.

2. Approximations to the pdf of d in (1.5)

For comparisons, we first remark on the so called 3-method fre-
quently used in asymptotic expansions of pdf’s or cdf’s. In this method,
based on the fact that plim 4=0 where 4=02—2, first #'=2I+

4927Y)! and then (X’.é"X )~! are expanded as infinite series in terms of
in-probability, and for d in (1.5), such a form as
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2.1) d=§i d;+R where d,=0,(n""*) and R=0,(n"""?)

is obtained, where O, denotes the stochastic order. The remainder R

is of the form R=§‘, d,. Then the characteristic function of d

(2.2) $(t)=E [exp (it'd)]

is expanded as an infinite series and simplified in the order of E (O, (n~%?%)
with a remainder term of the form E[O,(n""?% t)], which is a function
of n and ¢t. Finally by applying a formal Fourier inversion, an ap-
proximate pdf or cdf is obtained up to O(n~“~v7?). Contrary to such
many practices, little is known on the validity of this approach. Dif-
ficulties lie in the treatment of the remainder terms. In fact, the re-
mainder R in (2.1) is only defined in terms of in-probability, and it is
not defined, for example, on the set {chn.(427')>1} since on this set

i (427') neither converges nor equals (I+427)7!, where chp.,(427")
j=0

denotes the maximum latent root of 427!. Another difficulty is to show
that the remainder term E[O,(n"" t)] in the expanded characteristic
function exists and equals O(n~""% t) and that the Fourier inversion of
this term is O(n~"?, x). Thirdly, even if the validity of this procedure
is verified, as far as the derivation is based on such an argument that
there exists an n, such that for n=n,, the result is effective, the final
result thus obtained is not free from the restriction n=mn,. Here 7, is
usually unknown and may need to be very large.

In our approach, the concept of in-probability is not used at all
and a bound for approximation is provided for each n. It is noted

that the argument below does not depend on whether or not 0 is esti-
mated based on y only or an independent sample. Let

2.3) A=X'2"'X|n, X=0""XA"|yw and P=0-200- 1
where for C e S(k), C'* satisfies (C?)*=C. The X'X=1I, and from (1.4)
2.4) H=A""X'P'X)'X'P*X(X'P'X) A",

It is noted that replacing P by «P in (2.4) leaves H invariant for a>0.

Now from (1.3), d|£~N(0, H), which implies Cov (d)=Cov (v7 f(£2))=
E (H). The next lemma, which is due to Kariya [7], plays a key role
below, and so the proof is given.

LEMMA 2.1. J=H—-A"'=0.

PROOF. Since I,—XX' is idempotent from X'X=1I,, the result fol-
lows from
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25) J=A{(X'PX)'X'PI-XX'|P'X(X'P'X)}A"",
Let
V=P'—I, D=XVX, E=XVX
G=E-D* and Q=(I+D)'=(X'P'X)™.
Then from X'X=1I, and (2.4)
2.7 H=A"""{(I+D) (I+2D+E)(I+D)'} A",
LEMMA 2.2. H=A"'+J=A"'4+J,+ R, where
J=A"E—-D)A™  and
R,=A"'"[2D*—~ DE—ED+GD'Q+QD'G+QDGDQ]A™"* .

(2.6)

(2.8)

ProOF. The proof is given in Appendix A.

The following theorems state our main results in this section. The
proofs are given later.

THEOREM 2.1. Let f(x) be the pdf of d in (1.5) and assume that
E (t'Jt) ewists for all t. Let J,=E (J,), Ri=E (R),

(2.9) fo(x)=[1+(1/2) tr AJ,—(1/2)x’ AJ,Ax](2r) 2| A["2 exp (—(1/2)x' Ax) .
Then with c(k, 2)=(2r)*2

(2.10)  sup |f(x)—fi(#)|=c(k, 2) g exp (—(1/2)t' A™t)[E (¢'Jty'+4|t'Rit[lde .

It is noted that the approximation in (2.10) is uniform in z, and
that it holds for any = although it may be meaningless for n small.
Since J, is quadratic in V as in Lemma 2.3, if E(J)=0(n") and E (R,
=0(n"*?), fy(x) in (2.9) approximates f(x) up to O(»n~!) uniformly with
the bound of O(n~**). Further if the third moments of V vanish so
that E (R,)=0(n"?) the bound in (2.10) is O(rn"?). However it is still
difficult to evaluate the exact expectations in the bounds, although it
depends on the distribution of £ and the problem concerned.

Next, we consider approximations to the pdf and cdf of a linear
combination of d. Let

@.11) e=a'd=v7a'[H(Q)—pl ,
where a is a kx1 fixed vector (#0).

THEOREM 2.2. (i) Let g(2) be the pdf of z im (2.11) and assume
that E (a’Ja) exists. Let r=a'A™a,
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(2.12) g2 =[1+(1/2)(c"'—2"c"}) E (a'J.a)] (2rr) " exp (—2Y/27) .
Then with c(1, 2)=(2x)~'2"

(2.13) sup |g(2)—g4(2)|=¢(1, 2) S exp (—s'z/2)[s' E (a'Ja)
+4¢*|E (a'Ra)|)ds .

(ii) Further let G(z) be the cdf of z and let Go(z)=Sz_ go(x)dx. Then
(2.14) sup |G(2)—Gy(2)|==7'[27'.*E (a'Ja)’+ 7' E |a'Ral] .

For example, choosing a=(1,0,---,0) in (2.18), an approximate pdf
or cdf of the first coefficient 3,(2) of A(£) is obtained.
We note that so far we have assumed neither that A=X'2"'X/n

=0(1) nor that £ does guarantee the consistency of /§(Q). This is be-
cause the argument in the above has been made for a fixed n. How-
ever, the approximation in (2.10) does not make sense unless the bound
in (2.10) goes to 0 as n— o (or n'—o0), where n' is the sample size

for estimation of 2 if £ is estimated independently. From (2.10), the
condition for this is that both E (¢'Jt)* and E (R,) in (2.10) go to 0 for
all £ as m—oo (or n'—o0). Since 0<E (¢'Jt)=E|t'Jt|<[E (t'Jt)}]* and
E (t'Jt)=E (t'Jit)+ E (t'R;t) for all ¢, these conditions imply E (J)—0 as
n—oo (or m'—oo). Hence, from Theorem 2.1, these imply that d=
JW[ﬁ(Q)—ﬁ]—aN(O, lim A7') in distribution, where lim A>0 is assumed

here. Therefore, we obtain

LEMMA 2.3. A mecessary condition for the bound im (2.10) goes to
0 as n— oo (or m'—oo) is that the limiting distribution of dzdﬁ[ﬁ(.é)
—B] s N(0,lim A™").

Consequently, £ must guarantee this. Although even for the
OLSE ﬁ(I ), the approximation (2.10) holds, the bound does not converge
to 0 since JW[é(I)—,B]—-»N(O, li’r‘n A", In usual situations where 2 is
of some structure, say 2=4£2(6), choosing a consistent estimator of 4

will guarantee the condition in Lemma 2.3, and further at least the
order of the bound will be directly evaluated.

ProoFs oF THEOREMS 2.1 AND 2.2. Using Lemma 2.1, we shall
evaluate the characteristic function ¢(t) of d. From (1.3), (2.2) and
Lemma 2.1,

(2.15) ¢(t)=E [exp (—(1/2)t'Ht)]=exp (— (1/2)t’A~'t) E [exp (—(1/2)'tJt)] .
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Assuming that E (t'Jt)" exists, a Taylor expansion of (2.15) yields
(2.16) $(t)=¢(t)+E [(—(1/2)t'Jt)" exp (—(1/2)0t'Jt)[r!]

where ¢ is a random variate such that 0<6<1 and

@1 sO=exp (—(UDFA [T (-2 E @Y/ -
Define
2.18) fil@)=(2n)™* S exp (it'n)d,(t)dt .

LEMMA 2.4. Let f(x) be the pdf of d and assume that E (t'Jt)" ex-
ists for all t. Then with c(k, r)=2r) 27" (r!)™*

(2.19) |f (@) —fi(x)|=c(k, 7) S E (¢'Jt) exp (—(1/2)t'A"t)dt .

PROOF. From (2.16), (2.17) and (2.18), |f(x)— fl(x)l§(2n)"‘g|¢(t)—
é(t)|dt<c(k, 7) S exp (—(1/2)' A1) [E (¢'Jt) exp (—(1/2)0t'Jt)ldt. Since J=

0 from Lemma 2.1 and since 0<60<1, exp (—(1/2)0t'Jt)<1. Hence the
result follows.

Now to prove Theorem 2.1, let »=2 in (2.17) and (2.19). Then
from (2.17), ¢l(t)=¢o(t)+exp(-—(1/2)t’A"t)[—(1/2)t’1_21t] where ¢(t)=exp
(-(1/2)t’A“t)[1—(1/2)t'.71t]. Since fy(x)=(2r)* S exp (—it'z)g(t)dt, in the

same way as the proof of Lemma 2.4, |f(x)—fy(x)| is bounded above
by the right side of (2.10), completing the proof of Theorem 2.1. To
prove Theorem 2.2 (i) let ¥(s) be the characteristic function of z and
let ¥y(s)= @y(s)+exp (—s’r/2)[—(1/2)s* E (a'R,a)] where ¥(s)=exp (—s’r/2)
-[1—(@1/2)s*E (a'Jia)]. Since for ¢(t), ¢i(t) and ¢,(t) in the proof of The-
orem 2.1, ¢(sa)=T(s) and ¢,(sa)= T(s) (¢=0, 1) hold, the result follows
from the proof of Theorem 2.1. To prove Theorem 2.2 (ii), we use the
following lemma.

LeEMMA 2.5 (Feller [4], p. 512). Let G be a cdf with mean 0 and
characteristic function ¥. Suppose that G—G, vanishes at £ and G,
has a derivative g, such that |g|<K. Finally, suppose that g, has a
continuously differentiable Fourier transform ¥, such that ¥(0)=1 and
T/(0)=0. Then for all z and T>0

(2.20) 1G(2)—Gul)| <L S |’-”(s) 7(s) | gs-+ ‘;,K
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PROOF OF THEOREM 2.2 (ii). Define Z(s), #(s) and Zy(s) as in the
proof of Theorem 2.2(i). Then the conditions for Gy(z) and Z(s) in
Lemma 2.5 are easily seen to be satisfied. Hence the left-hand side

of (2.20) is bounded above by ! S“’ (@ (s)— Ty(s))/s|ds. But since T(s)
=¢(sa) and Ty(s)=g¢y(sa), from (2.16) we obtain
|T(s)— Ty(s)|<exp (—s'c/2)[27%* E (a'Ja)'+27'* E |a'Ral] .

Using this inequality and the fact that when s~ N(0, ™), E|s|=2"*z"1?
-7 and E|s=2"1""2¢"%2 we obtain the result.

3. Approximation to the covariance matrix

By the statement that a sequence of matrices, say B,, approxi-
mates the covariance matrix of /§ up to O(n~“"?), we shall mean that
the covariance matrix Cov (JW&)zCov (d)=E (dd’) of d=¢%‘(,§—ﬂ) ex-
ists and B, satisfies

3.1) lim n"~"2||E (dd')—B,||=0,

where for a matrix C, ||C||=(tr CC")"®. Hence, in this case the 3-method

discussed in Section 2 is effective if the existence of E (dd’) is verified

and B,=E (TZ_I di> (TZ‘_I di>’ is shown to satisfy (3.1), where Tz}_ldi is de-
=0 1=0 i=0

fined by (2.1). But in this approach, it is usually difficult to show (3.1).
This point is discussed in Taylor [16]. On the other hand, in his prob-

lem Srivastava [13] called E (TZ}_I di> (rz‘,:l di)l the asymptotic covariance

matrixz in probability up to O(n~""Y?) where r=2, which implicitly
implied that neither the existence of E (dd’) nor (3.1) had been checked.
In our approach, we use the relation

3.2) Cov(d)=E(H)=A"'"+E(J)=A"'"+E(J)+E (R) .
Assuming E (H) exists, this implies
(3.3) [Cov (d)—A'—=E (J)[[=E (R)] .

Thus if ||E (R)||=0(n"*?) is shown, A~'+E(J;) approximates Cov (d)=
E (H) at least up to O(n™"). Further, evaluating ||E (R,)|| gives a bound
for the left side of (3.8). In the next section, we use

LEMMA 3.1. Assume that E (H) exists and that all the 3rd, 5th

and Tth moments of V im (2.6) are zero. Then Cov @d)=A"'"+E (J)+
E (J,)+E (R,), where
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(3.4) J,= A" [D'G+GD*+DGDJA™,  and
Ry=A""[GD'Q+QD'GD+DGD'Q+QD'GD}QIA™""

and D, G and Q are defined in (2.6).

PrROOF. The proof is given in Appendix A.

4. Approximations to the moments and pdf of the UZE

In this section, in the 2 equations SUR model we derive an ap-
proximate covariance matrix of the UZE with a bound of order n73,
and an approximate pdf with a bound of order »%.. The SUR model
has the structure: in (1.1)

X, 0 |y U .31
wxfE 2 ve[] we[2] it g2
1) 0 X, Y Uy A B
where X;:mXk;, y,:mx1, u;:mx1, B;:k;X1, k+k,=k and n=2m.
Here the covariance matrix of « is of the form

4.2) 2=Covu)=3RI, where 3=(a,) € S(2) .
By the UZE we mean the 2SAE, (2) with 2=S®I, where with Y=
[y, %] and X*=[X,, X;], S=Y'[I—X*X*X*)*X*]Y. Let | be the

rank of X* and ¢g=m—I. Then as is well known, with Q:S®I, ,[3(!3)
satisfies the assumption (1.8) and S~W,(2, q), the Wishart distribution
with mean E (S)=¢Y and d.f. ¢. By (2.8), transforming X and S®I
with 2 2=23"12Q I into

(4.3) X=[3""QI1XA“y% and P=3""33"QI=SQI

the results in Sections 2 and 3 hold. Recall that A=X'[3"'RI]X/n
and J=H— A" where H is given by (2.4).

We first show the existence of some moments of d=¢%[;§(S®I )
—pB]. To show the existence of moments of H, without loss of gen-
erality, we replace P! in H by

(4.4) Pi'=W®I  where W=2S"/tr S,

so that tr W=2. A convenience in the 2 equations SUR model is that
W can be written as W=2S*/tr S*, where

) gr=] 8 8] hen s=[Bn 8],

—S Sy St S

Since S=3"1283""2~W(L, q), it is easy to see that S*~W(L, q). As
in (2.6), letting V=W®I—I, D=X'VX and E=X'VX yields H of the
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form (2.7). Some moments of W—I, are listed in Appendix B. Fur-
ther, let w, and w, be the latent roots of W where w,<w, Then,
tr W=2 with w,<w, implies w,+w,=2 and 15w,<2.

LEMMA 4.1. The moments of d=yw[A(SRI)—p] or ASRI) at
least up to order q—3 exist.

Proor. Let Z=w,—1. Then 0<Z=<1 and
(4.6) H<(1-Z%H1A

(Kariya [7]) and Z%~Be(l, (1/2)(¢—1)), the beta distribution with d.f.
1 and (1/2)(¢g—1). From (4.6), t'Ht<(1—Z*) 'A%t for all t. Hence
EWH)Y=(t'AtY E(1—Z%/. Since Z'~Be(l, (1/2)(¢—1)), E(1—-2Z%"/
exists if 7<(1/2)(g—1). Therefore, for ¢>25+1, E (t'Ht)’ exists for all
t. Hence the characteristic function ¢(t) of d is expressed as ¢(t)=

}1‘_,—}'—E(——(1/2)t’Ht)f +0,(t), where a is the largest integer such that

i=0 gl

@<(1/2)(g—1) and O,(t) satisfies 1lim |O,(¢)/||t]||=0 (see, e.g. Breiman [2],
t—0

p. 237). This implies that the moments of d exist up to 2a<q—1.
Hence if q is even, the (¢g—2)th moments of d exist and if q is odd, the
(g—3)th moments of d exist.

We are now in a position to apply the results in Sections 2 and 3.
Let

_ [ X= - -
4.7 X= [Xl] , M=X!X,—X/X, and N=X/X,+X/X, .
2 m
Recall that J), J, and R, are defined by (2.8) and (8.4) respectively.

THEOREM 4.1. Let ¢>8. The covariance matriz of d=y7 [A(SRI)
—B] is evaluated as Cov (d)=A"'+E (J,)+E (J,)+E (R,), where

(4.8) E(J)=—2_A"'——L1_ A~ N)A-»
g—1 q—1

3
(g+1)(g+3)
— (M N2 —(MN+NM) A2,

(4.9) E ()= A7V {4(MP+ N?)—2(M* + N¥)

Further, a bound for ||E(R,)||=|Cov(d)—A"'—E (J)| s given by

3.65 -1
(4.10) IE (Rn)llémﬂfl I (@=8)

and a bound for ||E (R)||=||Cov (d)—A~'—E (J)—E (J;)|| is given by
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79 -
. D= A =8).
(4.11) IE (Rl = PEGSIEE RN 147 (@=8)

PrOOF. The proofs of (4.8) and (4.9) are given in Appendix C and
the proofs of (4.10) and (4.11) are given in Appendix D.

We note that A~!/n is the covariance matrix of the Gauss-Markov
estimator =4 QI)=(¢'[Z"'QIX)"'X'[>'QI]y.

Using the definition of X, M and N in (4.3) and (4.7), it is easy
to see that the approximate covariance matrix A™'+E (J;) with E (J))
in (4.8) is equivalent to the asymptotic covariances in probability de-
rived by Srivastava [13] where the RZE is treated. Theorem 4.1 not
only gives the bound (4.10) for this approximation, but also it provides
the higher order approximation A™'+E (J;)+E (J;) with the bound (4.11).
The additional information E (J;) on Cov (d) is necessary for a further
comparison between the RZE and UZE, since the asymptotic covariance
matrices up to O(n™') of these estimates are the same, as pointed out
by Srivastava [13].

Next, based on Theorem 2.1 we shall derive an approximate pdf
of d.

THEOREM 4.2. (i) Let f(x) be the pdf of d=v7 [A(S®I)— 8] and
let

(4.12) fo(w)=[1+ 1

q+1

(s —e(w) ] 4(2)

where

(4.13) a,=k—tr (M*+N?Y/2, ay(x)=a'Ax—a' AV (M*+ N*)AVx
and

(4.14) ¢.(v)=(2m)"*"*|A|"* exp (—(1/2)x' Ax) .

Then

(4.15) sgp|f(x)—fo(x)|g(2n)-kﬂz-8|A|m[4k(k+2> 15k ]

(¢—3)  (@+1)(g+3)

(ii) For mormal approximation we obtain
(4.16) sup | @)~ 4@ S er) o2 2 ape.

ProOF. Substituting E (J)) in (4.8) into (2.9) yields (4.12). For

(4.15), we use (2.10). From the proof of (4.10) in Appendix D, R,=
E (R)=[3.57/(g+3)(g+1)]A™", while from (4.13), J=H—A"'<[2/(q—3)]-
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A7'. Therefore, the bound in (2.10) is further bounded above by

ok, 2) [—@;i?;)z— S (¢ A-1t) exp (—(1/2)¢ A-'t)d¢
4x3.65 ! _ ’A-1
mgm t exp (—(1/2)t' A t)dt].

Evaluating this yields (4.15). The proof of (4.16) is similar to that of
(4.10).

The result (4.16) is comparable to a result in Zellner [19], in
which when ¢=20 and X/X,=0, normal approximation is suggested. To
see this, for example, take k=4 and ¢=23, then the relative error is
sup | f(x)— ¢ 4(x)|/¢.(0)=1/5. While the relative error based on (4.15)
is sup|f(@) — fu(@)|/fo(0) < 1/8[4k(k+2)/(q—3)* + 15k/(q + 1)(g + 3)] = 0.042.
Hence, when X, X,#0 and ¢<23 normal approximation may not be ap-
propriate.

Finally, based on Theorem 2.2 (ii), we consider approximations to
the cdf of a linear combination of d.

THEOREM 4.3. (i) G(Z) be the cdf of z=a'd=y T ¢[ASRI)—p]
and let t=a'A'a. Further, let gy(z)=[1+(1/2)(z7'—2%c"%) E (a'J.a)]¢.(2),

Go(2)= Sz_m go(x)dz, and ¢.(2)=(2r7)"? exp (—2*/27). Then

(4.17) sup |G(z)—G.,(z)|§2n-'[ 2 4 } .

@3 @rDE@+9

(i) Let @,(z):S 6.(@)dz. Then
(4.18) sup |G(z)—9.(2)| =2V~ (q—3) .

Proor. (i) First note that from Lemma 2.1 and (4.6), we obtain
E (¢/Ja)*<[2/(¢—3))*z* and from the proof of Theorem 4.2, E (¢'Ra)<
[8.75/(¢+3)(q+1)]z. Substituting these upper bounds into the bound
in (2.14) yields the result. (ii) Immediate from Theorem 2.2 (ii).

We first remark that Philips [10] approximated G(z) by Gi(z) in a
neighbourhood of z=0. But our result (4.17) holds uniformly for all
z. Second, the approximation to the pdf of z can also be evaluated
based on Theorem 2.2 (i), but it is omitted here.

Appendix A. Proofs of Lemmas 2.2 and 3.1.

Using the relations DQ=QD, G=E—D* and Q=(I+D)'=I-DQ=
I—-D+D%Q, repeatedly, we can compute, AV2HA'? as
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(I+D)y'(I+2D+E)(I+ D)
=(I-DQ)(I+2D+E)(I— DQ)
=I+E—D*+2D'—DE—ED+GD'Q+QD'G+QDGDQ .

Substituting this into J=H— A=AV AV HA—])A'”, we obtain J=
Ji+ R, where J; and R, are defined by (2.8). This proves Lemma 2.2.
Since GD'Q=GD*'—GD*+GD'Q, QD'G=D'G—D'G+QD'G and QDGDQ=
DGD—D'GD—DGD*+QD'GD+ DGD'Q+QD*GD!Q, substituting these in-
to R, yields

R,=A""(D'G+GD*+ DGD)A~"*+ A-**2D*— DE— ED—GD'— D'G) A~""
+A"VHGD'Q+QD'GD+ DGD'Q+QDGD'Q) A~ = J,+ J,+R, .

But by assumption, E (J;)=0 and so E (R,)=E (J,)+E (R,), completing
the proof of Lemma 8.1.

Appendix B. Moments of V=W—1.

For W=28*/tr S* with S* in (4.4), let W=(w,,) and W—I=V=(v,,).
Then v;=w;—1 (¢=1,2) and vy=wy,. Since w,+wy=2, v,;+v,=0 or
V= —vy. Since S*~W(I, q), we write S* in terms of normal variate
Z=[Zy, Zy): qx2~N(0, I, QL) as

(B.1) S*=2'Z=(Z!1Z,) (,j=1,2).

Then from W=28*/tr S*, w,;=2Z/Z [(Z!Z\+Z!Z,) (i, j=1,2). Let T,=
217y, Ty=2{Z(Z!2,)"Z!Z, and Ty=Z{(I—Z(Z!Z) 217, and define

(B.2) U=T/T+T:+Ts) (t=1,2,3).
Since T,~X*q), T,~X*1) and Ty~X*q—1) independently,
(B.3) (U, U, Us)~Dy(q/2, 1/2, (¢—1)/2) ,

where Dy(a, 8, r) denotes the three dimensional Dirichlet distribution
with parameters @, 8 and . Hence the moment of U/ 1U;:Uys is easily
computed (see, e.g. Johnson and Kotz [6], p. 231). Using wy,=2U,
wh,=4U,U, and v,;=—wv,, we can easily evaluate the joint moments of
v;;. Denoting the 2nd and 4th order moments of viw3vs by a(e, a,
a;), we have a(l1, 1, 0)=0, a(1, 0, 1)=—7, a(0, 1, 1)=0, a(2, 0, 0)=7r, a(0,
2,0)=r, a(0,0,2)=7, a(1,1,2)=0, a1, 2, 1)=—p, a(2,1,1)=0, a2, 2, 0)
=p, a(2,0,2)=3p, a(0,2,2)=p, a(3,1,0)=0, a(3,0,1)=—3p, a(0,3,1)
=0, a(1, 3,0)=0, a(1,0,3)=—3p, a(0,1, 3)=0, a(4,0,0)=3p, a(0, 4, 0)
=3p, a(0, 0, 4)=3p, where p=1/(¢+3)(¢g+1) and r=1/(g+1).

The next lemma shows that the odd order moments of v;,’s vanish.
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LEMMA B.1. If a1+az+a3 'is Odd, then E (1}1"{1’01’;2?)2‘;3)=0.

ProOF. From the definition of v,; and from (B.1), v, is an even
function of Z, and Z, (i=1,2), and v, is an odd function of Z, (or Zy).
Note Z s~iid N(0, I,). Hence if a, odds, E (viw3vsi)=0 follows im-
mediately. If @, is even so that f=a,+a; is odds, from v;;=—v,, E (vt
wgws)=(—1)sE (vfv3). On the other hand, from the symmetry of
v,’s, it is easy to see that the distribution of (v, vi) is the same as
that of (vy, vn). Hence E (vhv3)=E (vhvi)= —E (vjw3), implying E (v},
-v%)=0. This proves Lemma B.1.

For Appendix C, we compute some more moments. Let
(B.4) ey=v4+vh, ep=en=vyVUu+vpVn, and en=vL+v}.
Using a(ay, a3, a;) defined above, after some calculation we obtain
(B.5) E(en)=E (e2)=2/(¢+1); E (eh)=E (¢i)=E (enex)=8/(¢+3)(g+1),
(B.6) E(¢)=E (eyen)=E (ex)=0; E(ewvi,e0)=0 (¢, 5,k=1,2),

(B'7) E (eijvlzekm):() (1” jr k: m=1, 2) H

E (vhe)=4/(¢+3)(q+1) (3, 5=12),
(B.8) E (e.},)=4/(g+3)(g+1)  (3,5=1,2);

E (vyvpen)=—4/(g+3)(g+1) G, 5=1,2).

Appendix C. Proofs of (4.8) and (4.9).

Introduce the notation C;;=X/X, where X/s are defined in (4.7)
and C11+022=Ik. Then

(C.1) D= X'VX= V1,Cyy +015C10 + V9 Coy + 03:Cos and
(C.2) E= X'vz)—(= e4Cii+eCia+,Co+ €:Ca

where e¢;’s are given by (B.4). Using Appendix B and the definition
of M and N in (4.7), it follows that

(C.3) E@D)=@+N)/(+1); E(E)=2L/(q+1)
(C.4) E(D'E)=E(ED)=4M"+N"/(q+3)(@+1)

(C.5) E(DY={(3M‘+M’N*+(MN)'+MN*M+NM*N+(NM)
+N*M*+3N*}/(g+3)(g+1)

(C.6) E(DED)=4M’+N%/(¢g+3)(g+1) .
Now using (C.3)-(C.6), E(J)) and E(J;) can be easily evaluated as
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(C.7) E(J)=A""E[E—D]A=(4.8)
(C.8) E(J)=A""E[D'G+GD'+DGD]A™ "
— A" E[D'E+ED*+DED—3D"|A"*=(4.9) .

Further, since J; in Appendix A consists of only odd (joint) moments
of v,’s, E(J;)=0 follows from Appendix B.

Appendix D. Proofs of (4.10) and (4.11).

Let p be a 2x2 orthogonal matrix such that pWy'=diag {w;, w;} =
diagonal matrix with diagonal elements w; and w; in this order and let

_ . [ Xm i
(D.1) [fRINX=X= [X‘} and B=X/X,.
zm.

Then tr W=2 with w,<w, implies w,+w,=2 and 1<w,<2 and X'X=1I,
implies I,= =X'X=X/X,+X;X,. It is noted that p and so X are random,

Further, let 0<9,<--- <3, be the latent roots of B=X!X, and let ¥
be a kxk orthogonal matrix such that

(D.2) TBU =diag {3,,- - -, 8:} ,

Since B=I—X!X,, 0<8,<1 (i=1,---, k). Note Z=w,—1 and 0=<Z<1.

Using X/X,=I—-B and w,=2—w,, D, E, G and Q in (2.14) with V=
WRI-I as

(D.3) D=Z@2B-I), E=Z1, G=4Z'B(I-B),
=(+Z@B-I))".

It is easy to see that D, E, G and @ commute mutually. Now we prove
(4.10). Since E(D%)=0, E(DE)=0 and E(ED)=0 (see Appendix B),
from (2.8) A*E (R,)A"? is equal to

(D.4) E{GD'Q+QD*G+QDGDQ} =E {8GD*+4GD'Q+D'GQ} ,

where QD'G=GD*Q=GD*—GD*+GD'Q and QDGDQ=D'G—-2D'G+2D'GQ
+D'GQ* with E(GD*)=E (D’G)=0 are used. From (D.3) GD*=4Z'B(I—
B)(2B—1I), and hence from (D.2), ¥GD¥' =4Z"diag {h(3,), - -, h(3x)}
where h(3)=8(1—29)(20—1)* (0<3=<1). But R(d) is maximized at J,=
(2+42)/4 and h(3,)<h(3,)=1/4* (i=1,---, k). Therefore GD*'<4Z*h(d,)I.
Since from Lemma 4.1, Z*~ Be(1, (1/2)(¢—1)),

(D.5) E(GDH=[(1/2)(g+3) @+ D=7 .

Similarly, GD'Q=4Z°B(I—B)(2B—I)'(I+Z(2B—1))"' =4Z*'¢" diag {h(d,),
., h(3.)}¥ where in this case h(3)=38(1—3)(20—1)*(1+Z(20—1))'. Since
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4Z°Md)=2Z°(1—0)(20—1)* from 2Z3<1—Z+2Z3, with 3,=9/10, 4Z°h(3)
=27Z°(1—-0,)(20)—1)'<2Z%(1—8,)(28,—1)*. Therefore

(D.6) EGD'Q)=rI=4/5)[1/(¢+3)(@+1)]I,  where

D.7)  7=Q1/5)(4/5)"164 7w I'((¢+1)/2)/2(q+4)(a+2)"((a+2)/2) .

Next, we evaluate E (D'GQ?). Note D'GQ*=4Z°T’ diag {h(3),- -+, (3} T
where h(3)=0(1—0)(20—1)Y(1+Z(26—1))"2. Hence from 4Z°h(3)<Z°(1—
ZN) N (1—-0)(20 -1)\'=Z*1—ZHH(1/10)(4/5)' < Z*(1— Z%7'(1/10)(4/5)* where
AZ3(1+Z(20—1) < (1/2)(1—Z)'<1/(1—2Z?) is used.

(D.8)  E(D'G)=r.I=(1/10)(4/5)'8[1/(g+1)(¢—3)]/I,  where
(D.9)  r.=(1/10)(4/5)'15¢ 7 I'((g+1)/2)/2(a+2)(¢—3)"((g+2)/2) .
Thus, from (D.4), (D.5), (D.6) and (D.8)

2.82 0.33 ‘
3)(g+1) (¢g+1)(g—3)

If ¢=8, the right side of (D.10) is bounded above by 3.65/(¢+3)(q+1).
This proves (4.10).

Secondly, we prove (4.11). From (3.5) and (D.6), it is necessary
to evaluate E (QD'GD'Q), and E (D'GQ). Note from Q=I—D-+DQ

(D.11) E@QD'GDQ)=E[D'G+D'G+2D'GQRQ—-2D'GQR+ DG .

(D.10) [ER)I=B@rit+4ri+r)llA7Y=
(a+

In a similar manner, each term is evaluated as

(D.12) E(D'G)=(2°/3) (g +5)(q+3) @+ ] =71,

(D.13) ED'G)=(3'/2)[(g+7)(g+5)(@+3)(g+D] =y,

(D.14) —E(D'GQ)=E (D'GQ)=3.248/9[(¢+7)(q¢+5)(g+3)(g+ )] =7,
(D.15) E(D'GQ)=E (D'G)+E(D’GQ)=(ri+r)=vl ,

(D.16) E(D'GQ)=3.2'(8/9)[(¢+5)(g+3)(g+1)(g—3)] ' I=7.I .

On the other hand, E (D'GQ)=E (D'G)+E (D'GQ), hence

(D.17) ED'GQ)=(rs+7:)I .

Therefore ||E (By)||=[3(rs+7e)+ 15+ 74+275+ 276711 ||A7Y||, which is bounded
above by 797 where »=[(¢+5)(¢+3)(¢+1)]"'. Here it is used that 9y,
<647, 7,52.99, Tr;=10y and 7,<2.1y.
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