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Summary

We consider consistency and asymptotic normality of maximum
likelihood estimators (MLE) for parameters of a Lévy process of the dis-
continuous type. The MLE are based on a single realization of the
process on a given interval [0, {]. Depending on properties of the Lévy
measure we either consider the MLE corresponding to jumps of size
greater than ¢ and, keeping ¢ fixed, we let ¢ tend to 0, or we consider
the MLE corresponding to the complete information of the realization
of the process on [0,t] and let ¢ tend to co. The results of this paper
improve in both generality and rigor previous asymptotic estimation
results for such processes.

1. Introduction

Let X denote a Lévy process, i.e., a stochastic process with inde-
pendent increments for which the distribution of X(¢t+h)— X(t) depends
only on h for all t€[0, o). Such a process is the continuous time
analogue of a sequence of partial sums of independent, identically dis-
tributed random variables and thus may be used to model inputs to
a dam or demands for a particular commodity, or certain other eco-
nomic phenomena. See for instance Moran [16], Fama [9], Brockwell
and Chung [7].

In this paper we establish consistency and asymptotic normality
of maximum likelihood estimators using the approach of Huber [14].
Huber’s results were extended to the Markovian case by Rao [18] and
to the independent not identically distributed case by Inagaki [15].
Inagaki also proved a number of interesting asymptotic results which
may be shown to carry over to the case of Lévy processes. Depend-
ing on properties of the Lévy measure, it is natural to consider two
cases. Namely, the case in which consistent estimators are obtained
from complete information over any finite interval [0, ¢], and the case
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in which consistent estimators are obtained only by letting ¢ tend to
oo. Roughly speaking, the distinetion lies in whether, for any a>0,
2
Fisher’s information number S( I, () [%{"’;x»] dp(x) correspond-
0)¢ 177 ¢/
ing to the jumps of the process X(t), 0<t<1, of size in (—a, a) is in-

finite or finite. Indeed, condition (BC 3) with p(zx, 0)=——logm and

dpte(2)
(1 Gt oty
a(x, 0)-(1 W) cannot hold unless SW[ e ]d‘u%(x) <oo.

Similarly for condition (BN 2). Finally note that when the last integral
above is infinite the measures P,, and P, cannot be mutually abso-
lutely continuous because condition (L 2) of Proposition 2.4 is violated.
The above arguments justify the subsequent labeling of the two cases.
The important question regarding the rate of convergence of the esti-
mators is investigated in Akritas [2].

Due to the fact that until recently (see Akritas [1], Chapter 4, or
Akritas and Johnson [3]) there did not exist a convenient expression
for the Radon-Nikodym derivative for Lévy processes, there has been
no previous general treatment of maximum likelihood estimation. Rubin
and Tucker [20] consider nonparametric estimation of quantities appear-
ing in the characteristic function of independent increment processes,
whereas Frost [12] was the first to study signal detection and estima-
tion problems for such processes (see also Segall and Kailath [21]).
Recently, Basawa and Brockwell [4] considered maximum likelihood
estimation for gamma and stable processes.

Technically, let 2 be the space D([0, o)) of all real valued func-
tions X(¢), t € [0, o) that are right continuous and have finite left-hand
limits, and let 4 Dbe the o-field of cylinder sets in 2. For each €6
C R*, let P, be a probability measure on (2, 1) and assume that, under
P,, the coordinate process {X(t), t € [0, o)} has stationary, independent
increments and characteristic function f(u)=exp [t¥(u)]. It then fol-
lows that the process X(¢) is continuous in probability and X(0)=0 a.s.
[P,]. Here,

. ey VUT
(L.1) B =iup(@)+| (o —1—E Jdpfa)

where, for each 6¢6, p((—oo, —a]U[a, ©))<oo, for all >0, and
Sl . 2’dp(x)<oco. The function ¥,(u) is called the exponent function and

po the Lévy measure of the process. If p, is finite, X(t) is a jump
process or a compound Poisson process; if p, is infinite, X(¢) is a limit
of jump processes. In the next section we present a number of pre-
liminary results that are needed in Sections 3 and 4 for the proofs of
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consistency and asymptotic normality respectively. In Section 5 we
present a number of examples.

2. Some preliminary results

In this section we state some results which are needed in the rest
of the paper. Unless otherwise stated, their proofs may be found in
Akritas [1], Chapter 4, or in Akritas and Johnson [3].

The first proposition serves to delineate the relationship between
Lévy measure and the first two moments of the process.

ProrosiTiON 2.1. Let X(t) be a process with stationary, inde-
pendent increments and exponent function given by (1.1). Then if
S‘ 2'dp,(x)=0'< oo the first two moments exist and

0}¢
xB
E X(t)zt(ﬁ—l— Smc mdp,(x)) . Var X(t)=to*.
Moreover, the additional assumption S“ |z]dp(x)< oo implies that E X(t)
0 [4

:tSmc x dp(x).

The next proposition generalizes a known result (see e.g., Breiman
[56], Proposition 14.25) and is useful in determining distribution proper-
ties of certain random functions.

ProPOSITION 2.2. Let X(t) be defined on (2, 4, P,) with Lévy
measure y, and exponent function given by (1.1), and let g be a Borel
measurable function such that f l9(x)|dps<oo. Then Y(t):%‘i 9(Z,) is
well defined, finite and {Y(¢); t>0} is a Lévy process with Lévy meas-
ure p,og7t.

The symbol f used above, denotes integration over {0}°. The sym-

bol %)} denotes summation over all jumps Z;, of X(s), 0<s<t. Also

N,(B) will denote the number of jumps of X(s), 0<s<t that are of

size B, where B is any Borel set bounded away from zero.
ProrosITION 2.3. Let X(¢) be as in Proposition 2.2 and let a(x)

la(2)P dpfx)<oco. For

be a Borel measurable function such that f m
x

any partition B,,, m=1, of R— {0}, let

N,.,=N{(B,) and define W(t)= "%1 [%t U Z,;)—t SB a(x)d;z,,(w)]
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where Z,, are the jumps of X(s), 0=s<t, of size B,. Then: (i) W(?)
is a well defined r.v. having an infinitely divisible distribution with

Lévy measure pg,oa™'; (ii) under the additional assumption that f [a(x)]?
‘dpy(x)< oo, EW(t)=0.

ProoF. (i) The r. v W(t) is the infinite convolution of the inde-
pendent r.v.’s W,(f)= Z a(Zm,) tS a(x)dp,(x) where, according to

m

Proposition 2.2, W.,({) ha.s exponent function

Summing these exponent functions over m we obtain

. —[a(®) tuz ) -1
mfiﬁwdyﬁ—f(e —1— l’b_ta;z>d/z,oa (x) .

Since the limiting exponent function is by assumption finite, the se-

quence of characteristic functions of i‘, W.(t) converges and hence
m=1

W(t) is the limit in distribution of that series. But then (cf. Chung
[8], p. 347) W(t) is also the a.s. limit of the series.

(i) Let DnzmQIB,,,. Then
e[ Ew.0] =t|, @riun@st f a@kdme) <o
Therefore, the r.v.’s [5‘:1 Wm(t)]r, n=1, are uniformly integrable for all
r<2, so that &,W(®)=lim 5,,[ méW,,,(t)]:O
Let P, , denote the restriction of P, on A,=0{X(s), 0Ss<T}.

ProposITION 2.4. For 6,6*¢®, P,, and P, , are mutually abso-
lutely continuous (=) if and only if

L1 pmpe,

L2) f[ <di"‘> ]2dyo<oo , and

4

(L3) BO%)—A(0)— f — d(pte—p)(@)=0.

_%
14t

The following useful remark is due to Newman [17].

Remark. Condition (L 2) implies f 1‘_{‘?!’”2 — tto|(x)<oco. This, in
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particular, implies that the integral appearing in (L 3) exists and is
finite.

ProposiTION 2.5. Let 6,6*€¢® and assume that P,,=~P;,.. Let
{D.} be any sequence of neighborhoods of the origin such that D, | {0}.
Let B,=D;, B,=D,,_,—D,, m=2, and set N,,=N;(B,). Then

dP T,0 T(rg=pg)(B ) d#a(ij)
ap, , KO tel0.Th= e Jnxdp,.(Z,,,,)]

It follows that

A,(8)=log j},’ (X(2), t € [0, T])
-5 _ dp@) polZm;)
E:[Tgum <1 dy,,(x))dﬁe @)+ 21°g d,u,,.(Z,,,,)]

Note. The proof of Proposition 2.5 was originally carried out in
Akritas [1] using a method based on martingales. The same result was
established independently and using a different method by Brockett,
Hudson and Tucker [6].

3. Consistency

In this section we establish consistency of the MLE using the ap-
proach of Huber [14] which is relevant for robustness considerations.
Methodologically, this approach is a generalization of the classical paper
of Wald [22]. In the first case, the estimators correspond to jumps
of X(s), 0<s<t, of size greater than ¢ and, keeping ¢ fixed, we let ¢
tend to 0. In the second case, the estimators correspond to the com-
plete information of the realization of the process on [0, t] and we let
t tend to oo.

Case A: Infinite Fisher information. For a Borel set B, bounded
away from zero, define the process X(B, t)=3] [X(s)—X(s—)]Ix(X(s)—
8st

X(s—)) whose jumps are of size B, and set X,*(t)=X([e, o), t), ¢>0.
Let Z,, j=1, .-, N, denote the jumps of X.,*(s), 0<s<t, and assume
without loss of generality that t=1. Define

Nl
(3.1) Y(0)=5p(Z - _ ala, 0)dpu )
for some functions p(x, 4), a(x, §). (Note that for

(3.2) (@, 0)=—logdu(x),  alx, 0)=1—dp(x)/dp.(r)

Y.(0) is minus the log-likelihood based on jumps of size greater than e¢).
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Let é,:é,(X,*(s), 0=<s=1): 2 —> 6 be a sequence of estimators such that
(3.3) Ly 6.)-Linfv, (6)—0 as. [P,]
n n oo

for any sequence of positive numbers ¢, satisfying assumption (AC 3).
We want to give sufficient conditions that any sequence of estimators
satisfying (3.3) converges in P,-probability to 6,.

AssumMpTIONS (AC). (AC1) 0 is locally compact.

(AC2) For each fixed 6 € O, p(x, 6) is Borel measurable and p(x, 6)
is separable as a stochastic process in 4.

(AC3) Let ¢, be a sequence of positive numbers such that e, | 0.
The quantities

r(0)=\ (o, 0)—alz, 0)du, @),

By
where B,=(e;, ), B;=(ei11, &;] are well defined, finite, and 7,(6) is lower
semicontinuous in ¢ uniformly in ¢, that is

(3.4) inf {y.6"); 6' € U} — 7(0) uniformly in 7,

as the neighborhood U of 4 shrinks to {#}. Moreover,
(3.5) 7alt)=- 21 1(0)—1(6), foral 6ec@.

(AC4) When 6, €0 obtains, y(6)>7r(6,) for all §+4,.
(AC5) (i) For each compact subset K of & with #,¢ K and for
each m=1, there exists a function g,(x) such that

S Iu(@)d gty (@) < oo and |p(@, 0)|<gn(z), VoecB,and VoK.
Bm

(ii) There exists a sequence S; of increasing measurable sets such
that ”"“(R_g S,-><oo and that for each 1, p,(B.)p(x, 6) is equicontinu-
ous in 8 for xz ¢ B,,NS; uniformly in m.

(AC6) For 6,6 €0, sxilpSBi |p(, 0")|dpx)< oo and sup SBi |a(x, 6%)|

+dg(w)<oo. If @ is not compact, let oo denote the point at infinity
in its one point compactification.

(ACT7) (i) The quantity S (p(x, 0)—a(x, 6))du,(x) is differentiable
B,

with respect to each componenft 0, of 8 and is increasing as 6, — oo,
=1, ..., k. Moreover, the slope is bounded away from zero uniformly
in 1=1.
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(i) for 6,0 <@, supS \a—Z—p(x, o')\d,z,(x)<oo, =1, -, k.
i JBy i

Note. The sets B, in (AC7) are specified through a sequence ¢, ] 0
as in (AC3) but we don’t require the sequence {e,} to be the same.
Actually the sequence can be different for each component 4,, I=1, ---, k.

Remark. 1If @ is compact (AC 7) is redundant. Condition (AC7) is
only used in the proof of Lemma 8.1 and the monotonicity it requires
is, admittedly, strong. If in some particular case it is not satisfied,
one may try to verify the conclusion of Lemma 3.1 by other methods.

LeEMMA 3.1. Under assumptions (AC1), (AC2), (AC3), (AC6) and

(ACT), there exists a compact set KZO such that any sequence 6, satis-
Sying condition (3.8) ultimately stays in K with probability tending to
one.

PrROOF. First note that
(3.6) L35[3 2, 00-a(z,, 0)|— 10

in P,-probability, where N;=N(B)) and Z;;, j=1, :-+, N, are the jumps
of X(t), OSt<1 of size B;. Indeed from Breiman [5] pp. 310-312, the
r.v.’s W,= Z ((Z:;, 80)—al(Z,;, 6,)) are independent. Moreover, assump-
tion (AC 6) 1mphes that, except for finite many 4’s, sup Var (W;)<oo

(see also Proposition 2.1) so that the law of large numbers for inde-
pendent variables (cf. Gnedenko [13], p. 226 or 232) applies. Next, by
Proposition 2.2, W, has mean value 7,6, so that (AC3) implies (3.6).
Similarly, assumption (AC 6) implies

3.7) .:7 53 [ zi;l W(Z.,, 6)— SBi a(z, ﬂo)d,u,,u(x)] -0

in P,-probability. From (3.6) and (3.7) it follows that for » sufficient-
ly large and with probability greater than 1—34,

(8  infLlY,(0)S-Y,(0)
=L 5[5 0z, 00-a(z, 00)]

+Z E [% a(Z,;, 0o)— SBt a(x, 00)‘#%(‘”)}

=7(6))+0.
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Next we are going to show that there exists a compact set K<6 such
that for all n large enough

(3.9) inf LY, (6)27(0)+2
eK N

with probability greater than 1—43. Relations (3.8), (3.9) and condition
(3.3) imply the result of the lemma.
In order to show (3.9) note that with probability tending to one

n Ny
as n— oo, the quantity 1 P [Z‘. o Zy;, 0)—8 a(x, 6’)d,u,,0(a:)] is increas-
n i=1lj=1 B,

ing as each coordinate 4, of 6 tends to . Indeed, differentiating with
respect to 6, we obtain

% é [E —p( i 0)— _Sai a(z, 0)d#o,,(x)]

j=1 06, 4,
_ 1 n T _ a
_ZELZ_" a_o,p (Zis» 9) SB,. 26, /(@ e "°(x)]
1 n
o S|, 0 0)—a@, 0)dpue)

By the law of large numbers and assumption (AC 7)-(ii) the first part of
the above expression tends to zero while by (AC7)-(i) the second part
is either positive or negative as 6, is on the right or left of 4,, respec-
tively. Therefore, if K is a large enough compact set it follows that,

with probability tending to one as n— oo, inf { Y. (0); 6¢ K } =Y. (6,
where 6, belongs in the boundary of K. Thus, with probablhty tend-

ing to one as n — oo,

inf Ly, (0)=L7, (0)

¢K M

n
=—,,1{ é [gil (p(Zi,, 01)—(1(th, 01))]

+13 [j% a(Ze, 00—, alw, 03y @)]

=7(0,)—3>7(0)+3a,

where >0, for all n large enough, by (AC3), (AC4) and the law of
large numbers.

The next lemma provides an extension of Theorem 1 of Rubin [19]
in the context of Lévy processes.

LEMMA 3.2. Let K be a compact subset of @ containing 6, and let
assumptions (AC 2), (AC5) and (AC6) hold. Then
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L[S0 0], te ] 0
as n— oo a.8. [P,] uniformly in 0 c K.

PROOF. From the assumptions made we may select I large enough
so that, for all :=1

(3.10) oo mm@du@<E,  where S.=B.nS,,

m,1

holds except for finite many m. Since K is compact we may by (AC 5)-
(ii), select 6,€ K, I=1,...,q and open neighborhoods K, of 4, with K

_C_LqJ K, and
=1
(3.11) o Bn)|p(2, 8)—D(2, 0L)I<—Z—

for all m, e K, and x €S, ;.
As usual, let Z,; denote a jump of size B, and define

(3.12) Uni=9u(Zny) if Z,.;¢801, 0 otherwise .

By definition of a.s. convergence, v >0, >0 there exists N>0 with

3.13) P, [some n>N, | 1 [Z D(Z s 0,)

g
—S.Bm p(x! 0l)dﬂﬂo(x)] l g%] <2_q ’ l=1v ce,q

and

(3.14) P, [some n>N, ‘ o I(Z‘, Um,>

2_5_] 9
— 8 <2

where for (3.14) we also used (3.10) and (3.12). Next, for each 6 ¢ K,
l=1’ e, q

Ms

(3.15) H@_ mz_ (Z,;0 0)— Sﬂm (z, 0L)d;zao(x)] ’

= | 3 0y 0)—PZy 0)

1
n

3'*“ ﬁM: .'-'-

1j=1
E= [Em}l D(Zpyr 0,)— SB,,, »(z, 0l)dﬂﬁo(m)} ’ .
Relation (8.11) implies that for I=1, ..., q,

(3.16) 15 | N(D(2y 0)— (s 0))| <~
n m=1 4
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with probability tending to one as n — oo uniformly in 6 € K, and z,
€S,,. Also for 6 ¢ K, there exists z, €S, ; with

1D |3 6y )P, 00)| SIN.olns 1l 0142 3 UL,
Thus, by (3.16), (3.17) and (3.14),

(3.18) P, [some n>N, }1 > Z_}(p(Zm,, 0)—(Z.;, l))|;_%]<%.
Relations (3.15), (3.18) and (3.13) imply

(3.19) P, [some >N, some 6 €K, | 1 [2 2Z.,, )

—{,_ 2@ 0 o)]

8,9, =d.
ze|<2+ 5
Finally, from (3.10) and (8.11), it follows that
1 n m
|2 5[5 0t 0,2t 10|
1 &[& €

= IZmZJ [2 p(ij, 0) S 5, p(x’ 0z)d/~‘ao(m)] ’ +§

so that, by (3.19)

P, {some n>N, some 6 € K, l—- [Z P(Zny, 6)

— SB oz, 0)dp,,0(w)] I 225]
<P, [some n>N, some 0 ¢ K, l 1 [E D(Z,; 0)

- SB,,, P, 004 @) || >¢|<a.

THEOREM 3.1. Let assumptions (AC 1)-(AC 6) hold. Then every se-

quence 4, satisfying (3.3) and the conclusion of Lemma 3.1 converges to
6y in P,-probability.

Proor. We restrict attention to the compact set K and let U be
an open neighborhood of 6,, By (AC8) r is lower semicontinuous. In-
deed, if U is a neighborhood of 4, inf {y(6"); 6’ € U}glimﬁinf {r«0;

n—oo =1
¢' € U} so that if U | {6} it follows, via (3.4), that 3ilr(n’inf {r(¢"); 6’ e U}
()

=7(6). Thus its infimum on K\U is attained and by (AC4) this is
greater than 7(6,), say =7(6,)+43, some 3>0. Next by (AC 3) again,
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each 0 € K\U admits a neighborhood U, such that for all » large enough,

(3.20) L Sinf {r(00; 0/ € U} Z7(0)+30 .
Select a finite number of points 6,, r=1, ---, N such that U,= U,, cover

K\U and (3.20) holds with §=4,. For each »=1,..., N,
n Ny
”ienUf nt Y‘n(o)zeigif n1 igl[jzzl ™ Zy,, 0)—83. p(x, ﬂ)d,u,,o(x)+n(0)]
(2 0)=, Pl g o)) |

+inf n-! 2 r(6)=71(6,)+23,

el

n Ni
> inf -t z[z

6eU, i=1lj=1

for all » large enough, by virtue of Lemma 3.2 and (3.20). Therefore,
if (3.3) holds, 6, should belong to U by virtue of (3.8).

The proof for X, (t)=X((—oo, —e], t) and X,(t)=X((—e¢, ), t) car-
ries over with identical arguments.

Case B: Finite Fisher information. Let p(z, 8), a(x, ) be two
measurable functions and assume that for each #€¢6, t>0, for any
realization X(s), 0=<s=<t, and for any partition B,, m=1, of R— {0}

(3.21) Y(0)=3 [gﬁ” 2Zos, 0)—t SB a(, ﬂ)d/z,o(x)]

is well defined and finite, where N,,=N,(B,) and Z,, i=1, .-+, N,
are the jumps of X(s), 0<s<t, of size B,. Note that for

(3.22) P, 0)=—log L&) gy, =1 dLD)
d#’o(x) dﬂ,o(x)
Y,(0) is —log%:& as defined in Proposition 2.5. Next, let 6, =0,(X(s),
7,6

s€[0,T]): 82— 0 be a sequence of estimators such that

(3.23) T4Y;(6r)—inf T Y7(0) > 0 a.s. [Py].
fe

It will be shown that any sequence of estimators 5T satisfying (3.23)
converges in P,-probability to 6, provided the following assumptions
are met.

AssumpTiONS BC. (BC1) @ is locally compact.

(BC2) For each 6€6, p(x, ), a(x,d) and Borel measurable and
separable as stochastic processes in 4.

(BC3) (i) The quantity
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0=\ @l 0)-a(e, 0)du, @)

is well defined, finite and
(ii) it is lower semicontinuous, that is
inf {r(0'); ¢’ € U} — ¢(9)

as the neighborhood U of # shrinks to {6}.
(BC4) When 6, €@ obtains, r(8)>7r(6,) for all 4+4,.
(BC5) (i) The derivatives of p(z, 6), a(x, §) with respect to 4,

=1, ...,k exist and for 6 ¢ K, any compact set, '-5%—1)(27, 0)l§gl(x),
l

| al@ 0)| S0@) with | 0@dp@)<oo, i=1,2.
0}¢
(n) The quantity y(f) is increasing as each component 4,, I=1,
., k tends to infinity.
(i) Smc (@, 0)du(z) <o .

(BC6) The function p(x, ) is continuous in 4, vz, and for each
compact subset K of & with 6,¢ K there exists a function g,(x) such

that |p(z, 0)|<gs(x) for all z and for all 4 € K, with S{ gs()d g5, () < 00.
0}¢

LEMMA 3.8. Under assumptions (BC 1), (BC 2), (BC 3)-(i) and (BC5)

there exists a compact set KCO such that any sequence br satisfying
condition (3.23) ultimately stays in K with probability tending to one.

PrOOF. First note that
G20 TST)=T" B[ E @ 00— (Zui 1) - 0

in P,-probability, where N,,=N,(B,) is the number of jumps Z,; of
X(t), 0=t=<T, of size B,. Indeed if t, is an arbitrary but fixed posi-
tive number, define S;=S(jt)—S(jt,—1t), =1, .-+, n, where n=[T/t]

is the greatest integer smaller than 7Yt, so that S(T)=é S;+R,, where
j=1

R, is a remainder term. Thus, by (BC 3)-(i), the law of large numbers
for i.i.d. r.v.’s applies (see also Propositions 2.1, 2.2). Similarly, by
(BC 5)-(iii) and Propositions 2.1, 2.2,

(3.25) T 5| S alZns 00-T | als, 09dpz)] -0

in P,-probability. From (3.24) and (3.25) it follows that for T suffi-
ciently large and with probability greater than 1—3,
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(3.26) inf T Y ()< T~ Yo (6)<7(80)+9 .
de

Again we prove the result of the lemma by showing that there exists
a compact set KC® such that for all » large enough

(3.27) inf L ¥,(0)27(0)+2
ogx T
with probability greater than 1—3. To do this note that

oo Npr
Tt 2= [jz:lp(zm,, 6’)——TSB a(zx, 0)d,u,o(m)]
is increasing as each coordinate 6, of 8 tends to co. Indeed, differen-
tiating with respect to 4, we obtain
o [NVmr a
T3]

m=1l j=1 94,

P 0)=T | ~-2-ala, 0)dp o))

Note that by virtue of (BC5)-(i) we can differentiate under the sum-
mation sign (see also Proposition 2.2) and further we can differentiate
under the integral sign. We rewrite the above as

7 5[ 32wz, 07

2
9 p(w, 6)d }
332 200, O o)

m

+f aiol(p(x, 0)—a(@, 6))dp1q () -

By (BC5)-(i) the first term tends to zero so that by (BC 5)-(ii) it is
either positive or negative as 6, is on the right or left of 6, respec-
tively. The proof can now be completed by copying the concluding
arguments of Lemma 3.1.

LEMMA 3.4. Let K be a compact subset of @ containing 6, and let
assumptions (BC2), (BC6) hold. Then

T—lz[ jZ'.Tp(Z’"-” 0)—TSB oz, 0)dy,o(x)]—+0, as T— oo
m=1 =1 m

a.s. [P,] uniformly in 6 ¢ K.

PROOF. Since K is compact we may, by (BC6), select 8, ¢ K, I=
1, .-+, ¢ and open neighborhoods K, of 6, with K _C_ZCJ K, and
=1

(3.28) | (ola, 0)—p(a, 00 (@) <2, voeK, I=1,--q.

Thus
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3.29) B, [some n>N, |77 3] 3020 007, 00)] [ > 5] <L
Also, for I=1, -

(3.30) P, [some n>N, IT‘ [Zp(ij, 0:)— SBmW’ ”l)d”’o(x)“g%]

<9
2q
Next, for I=1,..-,q

N,

IT s [ ilTp(ij, 0)—SBm (z, 0z)dmo(w)] l

Jj=

<|T! fj [Nir(p(zmp 0) = D(Zns: 0’))‘] |

m=1[ j=1

+ |17 330, 00— pte, 00|
so that by (3.29), (3.30)

(3.31) P, [some n>N, some 6 € K,

fap> [ 3 P(Znsy )—SBm Pz, 0)du, @) | Ze |

m=1[ j=1

—+—q=09.
+2qq

Finally, by (3.28), (3.31),

P, {some n>N, some 6 € K,,

7 5[ 30t 0 [, 2o 0 @) | 2e+3]

gP,o [some n>N, some 6 € K,,

7 5 320 0 2t 000 00| ze] 0.

THEOREM 3.2. Let assumptions (BC 1)-(BC 4) and (BC 6) hold. Then
every sequence br satisfying (3.23) and the conclusion of Lemma 3.3 con-
verges to 6, in P,-probability.

PrOOF. We restrict attention to the compact set K and let U be
an open neighborhood of 4,. By (BC 3)-(ii) the infimum of y(d) on K*
=K\U is attained and, by (BC 4),

(3.32) inf {y(0'); 0’ K*} =v(6,)+34, some 3>0.
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Thus,

feK*

inf T-Y,(6) = inf {T s [ ép(zmj, a)—TSBm oz, 0)dp,,o(x)]+y(o)}

Zint T3] [g Py )T pla, OMdpia(a) |+ int 7(6)

feK*

=7(00)+ 25

for all » large enough, by virtue of Lemma 3.4 and (3.32). Therefore,
if (3.23) holds, 6, should belong to U by virtue of (3.26).

4. Asymptotic normality

In this section we take @ to be open, we assume that some 6,€6
obtains, i.e. P, is the true underlying probability measure, and we will
impose assumptions that are local in nature. Detailed proofs will only
be given for case B (finite Fisher information) while for case A we
simply state the assumptions.

Case B: Finite Fisher information. Let 7(x, ) be an R*-valued
function on R X6 and set

(1) V0= 5] 3 1] @, 0dpu(o)]

where B,, m=1, is a partition of R— {0}, N,,=N,(B,), and Z,;, j=
1,.--, N,,, the jumps of X(s), 0<s<t, whose size belongs in B,. It
follows from Proposition 2.2 and assumption (BN 2) below that V,(6) is
well defined and finite a.s. P, (and hence a.s. P, if P, =P, in a neigh-

borhood of 6,. Next, let 0—05(X(t), tel0,T): .Q—» /] be a sequence of
estimators of # such that

(4.2) T-Vy(f;)—0, in P,-probability .

We want to give sufficient conditions ensuring that any sequence of
estimators satisfying (4.2) is asymptotically normal. In the following
|0|=max {|6y], - - -, |6}

AssuMPTIONS (BN). (BN1) For each fixed 0 ¢80, 5(x, 0) is Borel
measurable and 7(x, ) is separable as a stochastic process in 4.

(BN2) fln(@, O)fdufz)<oo, i=1,2, for |9—0|<d, some dy>0.

Let u(=, 0, 3)=sup {|n(x, 0)—x(x, 0")|; |0—06'|<3}. Then,
(BN 3) There exist strictly positive numbers «, 8, y such that

(1) ful, 0, 0)du(x)<p for |0—0,|+I=dL.
(i) fu(, 0, 0fdps(x)<7 for |0—0y|+I=d,.
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Define 4(6) by E,, Vi(6)=tA(0), so that z(o)=§ @, 0)d,u,o(a:)—g 2@, 0)d (%),

and 4(6,)=0.
(i) |2(0)|=el0—06,| for |0—0,|=d,.
(BN 4) 2 has a nonsingular derivative S at 4,.

LEMMA 4.1. Let

v gy— V(60— V(6)—TA(6")+ TA6)|
20, 0)= VT +T|A0")| '

Assumptions (BN 1), (BN 2), (BN 3), imply that as T — oo

sup {Z.(8, 6,); |0—0,|<d,} — 0 in P,-probability .

PrOOF. Assume that 6,=0 and d,=1. Let M =2, ¢q=1/M, p=1—¢q
and consider the subdivision of the cube |#|<1 into concentric cubes

C.= {ﬂllﬁlgp"‘} , m=0,1, ..., my. Split C,_;\C,, into smaller cubes with

edges of length 2d=p™"'q. It follows that there are N<m(2M)* cubes
in C\C,, which we number Cy,, - -+, Cy,. Note that if ¢ is the center
of a cube in C,_\C,, |¢|=p"""(1—q/2).

Next, given ¢>0 and %<f<1, let Mgﬁ and define m,=my(T)
ea

by p™m<T-/<p™~t. If then follows

4.3)  mf(T)—1<—T18T <7y, so that N=0O(log T).
[log (1—q)|

We will show that the r.h.s. of (4.4) tends to 0 as T — oo, where,
(4.4) P (S}lp Z(0, 0)=2¢)
16151

<P (sup Z;(0, 0)226)+ 3} P (sup Z:(0, 0)22e).
(23 Cmo J=1 de [€))

Let & be the center of Cy, and 6 € Cy,. Then by (BN 3)-(i),

(4.5) 12(0)—28)|=  u(w, &, d)dp,(@)<pd<pp™q,
so that

[Ve(6) — V(&) = TAO) + TAE)| , |Vie(§)— Vi (0)— T2(2))|
4.6)  Z:(6, 0= VT +T|(0)| VT T|2(6)|

_ Su(Z, & )+ T f u(w, &, d)dp )

Tap™
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+ |VT(5)— VT(O)— Tl(f)l — UT+ WT
Tap™

where in the second inequality we made use of (4.5) and the fact that,
by (BN 3)-(iii), |A(0)|=e|f|=ap™, for 6¢€C,. Next, by (BN 3)-(i),

f w, §, 0)du, () <BI=pp™g, which, with the definitions of M and ¢
imply

(4.7) capm—2 f u(w, ¢, d)dp ()2 cap™—26qp™ = pap™ .
Thus,
P (Urze)

(T)
—P {z‘. wZ, & A)—T § u(w, &, d)dpu, 2 Teapm—2T § u(a, ¢, d)dp,,o}

<P{SwZ, & DT fulw, ¢, ddpu,= Thap™|

<_T ._1__,
~ fpg Tp
by (4.7), (BN 3)-(ii) and Chebyshev’s inequality. Similarly, P (W,;=¢)
r 1
éWW Hence,
4.8) P(sup Z.(0,0)=2¢)<KT’', where K=—"_+__T
(48) P (s Z:(0, 0)220) At

Moreover, with d=(1—¢)~<T"/, and for T large enough,
P (sup Z,(6, 0)=2¢)
6eC
r
<P (z WZi, 0, d)—T § u(z, 0, dydpo (@)= VT e—2T f u(z, 0, d)d,u.,o)
<P ((Tz’ wZ, 0, d)—T § ulw, 0, d)dp,z «/‘ﬂ) ,

since qu(x, 0, d)dy,,o<,8d§ﬂT‘f, so that, for T large enough, 24T ¢—
2T f u(w, 0, d)dps,=vTe. Thus, by Chebyshev’s inequality,
(4.9) P(sup Z,(0, 0)=2e)<ye?T 7.

aeomo
Combining (4.3), (4.4), (4.8), and (4.9) we have P(§u‘§) Zp(0,0)=2¢)=
O(T~)+O(T’ 'log T) which proves the lemma. ’

COROLLARY 4.1. Suppose that 5, 18 a consistent estimator salisfy-
g (4.2). Then, under assumptions (BN 1), (BN 2), (BN 3),
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T-V,y(6))+ T*2(6:)— 0  in P,-probability .
Proor. The identity
Ve(00)+ TA(6) = [ V(60— Vo (87)+ TA(6,)]+ Vi(6z)

and the fact that P, (lér—00[§do) — 1, as T — oo, imply that with prob-
ability tending to one,

Vr(8o)+ Tz(a,) .y
4.10 T up Z.(0, )+ T"*V,(0,).
( ! v +T|2(0r)l la"‘”olgda 2(6, 60) r(0r)

Therefore, Lemma 4.1 and assumption (4.2) imply that the left-hand
side of (4.10) tends to zero in P, -probability, so that, for sufficient
large T,

(4.11) P ( T2V 4(0)+ T*2(6)|>e(1+ T‘/le(éT)[))é-i- .

By Chebyshev’s inequality,

4.12) P(T '~ V,(ao)gD)gi , where D*=2 Jf [n(, 00)1'd o (2) / €.
From (4.11) and (4.12) we have

<T‘/2|2(0 )= Di”)

=2
which, together with (4.11) implies

P (l T2V 4(80)+ Tlﬂx(éT)g(’f—l)s) <
—€
A straightforward application of Corollary 4.1 and the multivariate
central limit theorem yields

THEOREM 4.1. Suppose that éT 18 a consistent estimator such that
it satisfies (4.2). Then, under assumptions (BN 1)-(BN 5)

LITY(6,—6))|P,] => N(0, S7'I'(S')™)
where I’ = f [n(, 6o)7' (2, 60)1d s,

Assume now that for 6, 6* €@, P, , and P, . are mutually absolute-
ly continuous (see Proposition 2.3 for conditions), fix 6* € ® and let the
logarithm A4,(8) of the Radon-Nikodym derivative of P,, with respect
to Pr . be given by the expression in Proposition 2.4. Let

_ i _ d#a(w)
(4.13) 7, 6)= =7 log ¢(x, 0) , where ¢(x, 6)= L1t (@)
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and assume that assumptions (BN 1)-(BN 4) hold locally uniformly in
6,. Assumptions (BN 2), (BN 3)-(ii) and Proposition 2.2 imply that 4,(8)
may be differentiated under the summation and integral signs so that
V«(0) in (4.1) with 5(x, 6) given by (4.13) is indeed the likelihood esti-
mating function. Hence there exists a sequence of maximum likeli-

hood estimators 6, such that (4.2) is satisfied. Next it is easy to show,
perhaps under some additional assumptions, that the derivative of 1 at

0, is —I'(00)=—f [1(x, 6)7/(x, 0)ldpss, (see Huber [14], p. 231) and that
I'(6,) plays the role of Fisher’s information matrix in the asymptotic
theory of estimation. Thus the efficiency of the maximum likelihood
estimator follows from Theorem 4.1.

Case A: Infinite Fisher information. Let X(s), 0<s=<1, and Z,,
j=1,--+, N be as in Section 3. Let %(x, §) be an R*-valued function
on RX6 and set

N
(419 VO=3 12, 00— _ (@, 0)duiz).
Let 6,=0,(X*(s), 0<s<1): 2— 6 be a sequence of estimators such that

(4.15) Ly (6.)—0, in P, probability
n

for any sequence of positive numbers ¢, satisfying assumption (AN 2).

The assumptions under which a sequence of estimators 4, satisfying
(4.15) is asymptotically normal are given below.

AssumMPTIONS (AN). (AN1) Same as (BN 1).
(AN 2) Let ¢, be a sequence of positive numbers such that ¢, | 0,
the quantities

(4.16) A(0)= SB_ (@, 0)dpto () — SB. (@, 6)d ()
where B,=(e;, ), B;=(e:,1, &;] are well defined, finite, and
(4.17) 1.0 )=%1_i: (O —0), 0¢€6.

It follows that (4,)=0.
(AN 3) supSB [n(2, 6)|dp(x)<oco and sgpSB [n(2, O)Pdp(x)<oo for
t i i

10 —0y|=d,, some d,>0.
Let w(x, 6, 3)=sup {|7(x, 0)—=»(x, 6')|; |0—0'|<3}. Then
(AN 4) There exist strictly positive numbers «, 8, ¥ such that
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(i) supSB w(, 0, 3)dp, (@) <o for |0—6,|+3<d,

(i) s1i1pSB [u(x, 8, 8)'dy, (x)<rd for |0—6,|+d<d,

(i) [2(0)|Zal6—0,| for |0—0=d,.
(AN 5) 2 has a nonsingular derivative S at 4,.

5. Some examples

In this section we present four examples that illustrate the gen-
erality of the theory.

Example 1. Consider the class of compound Poisson processes.
Here the Lévy measure is of the form A.-F where, 2 is the intensity
and F denotes both the distribution function of the jumps and the
corresponding measure. F may be any of the standard parametric
families and 2 may be an additional parameter. It is then easy to
check that for many parametric families, minus the log-likelihood func-
tion [likelihood estimating function] satisfies Assumptions (BC) [As-
sumptions (BN)].

Example 2 (Parametric signal detection). Consider now the fol-
lowing general class of problems. Let g be a Lévy measure, and let
X(t) be the corresponding process (e.g. g could be the Lévy measure
corresponding to a stable process). Further let v, be a second Lévy
measure, corresponding to the process Y(t), that depends on a param-
eter 4 (e.g. v, could be 4, (N(6,, 6s)), 6,, 6,>0, 0,€ R, where N(0,, 6;)
denotes the normal distribution with mean 6, and variance 6;). It is
assumed that we observe Z(t)=X(t)+ Y(t) and want to estimate 4. It
is easily seen that the process Z(¢t) has Lévy measure p+v,.

Example 3. Let {X(¢),t € (0, o0)} be the gamma process. That is,
the characteristic function of X(f) under P, is ft(u):<l——i%>~t, 6>0.
The exponent function is given by (1.1) with (cf. Feller [10], p. 567)

e—ﬁ.’ﬂ

0, 14 a?

dr and p,(A):S " g , A€B.

AN,

6.1 80=|
In order to check whether Assumptions (BC) are satisfied for minus
the log-likelihood, note that (5.1) implies

(5.2) p(x, 0)=0—0)r, alx, d)=1—e "=,

It follows that assumption (BC2) holds since p(x, ), a(x, ) are con-
tinuous in x for each fixed # and continuous in 6 for each fixed .
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Next (BC3) is easily seen to be satisfied while (BC4) holds by the
well-known properties of the Kullback-Leibler information number.
For (BC5)-(i) take gi(x)=z, gi(x)=xe “"%", where 0<e<inf(f; 6 € K).
(BC 5)-(ii) is satisfied since the integrand of y(f) possesses the stated
property, while (BC 5)-(iii) is easily seen to be satisfied. Finally, for
(BC 6) take gy(x)=cx, where c=sup (6—40,; 0 € K).

Next, in order to check that Assumptions (BN) are satisfied note

that 5(x, 6)=2x, so that (BN 1), (BN 2) and (BN 3)-(i), (ii) are clearly
satisfied. Also since ()= 0;00" , (BN 4) is satisfied and (BN 3)-(iii)

hOldS With a=00(00+d0).

0

Example 4. Let X(t), t=0 be a stable process so that du,x)=
apr~'"?dx, =(a, B), @>0, 0<B<1. Thus in order to check that As-
sumptions (AC) are satisfied for minus the log-likelihood, take

(5.3) p(x, )= —log (¢f)+(1+p)log x , a(zx, 0):1——9'3—:5“""90) .

aBy

It is easy to see that if we select the sequence ¢,, n=1 in such a way
that sup [(e3%—e;%)-log ezli]<co then (ACS3), (ACSH) will hold while

(AC4) holds by the well-known properties of the Kullback-Leibler
information number. (AC5)-(i) is clearly true while the condition
sup [(esfo—eif) log el ]<oo implies that p,(B)p(x, 0)=adeslo—ei]-

[(1+p8) log x—log (¢f)] is equicontinuous in 6 for x ¢ B; uniformly in <,
so that (ACb)-(ii) is also satisfied. Next to check (ACT7)-(i) for the
parameter o take {e,} so that (ej?o—e;3%) remains bounded away from

zero and note that the derivative of S (p(x, 0)—a(x, 0))du,(x) with re-
By
spect to a evaluated at (am By is (a;ﬂo—ei;eo)<ﬁ°_—1). (ACT)-(Gi) is
a

easily seen to be satisfied. Similarly for the parameter g.
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