SOME ASYMPTOTIC DISTRIBUTIONS IN THE LOCATION-SCALE MODEL

LOUIS-PAUL RIVEST

(Received Jan. 16, 1980; revised Oct. 27, 1981)

Summary

Scale and location estimators defined by the equation

$$\sum_{i=1}^{n} J[i/(n+1)]\phi[(X_{(i)} - \hat{T}_n)/\hat{V}_n] = 0$$

are introduced. Their asymptotic distribution is derived. If the underlying distribution is known, a large number of estimators is shown to be efficient. Step versions of these estimators are also studied. Hampel's (1974, J. Amer. Statist. Ass., 69, 383-393) concept of influence curve is used. All the asymptotic results presented in this paper are derived from a general theorem of Rivest (1979, Tech. Rep., Univ. of Toronto).

1. Introduction

Let X_1, X_2, \dots, X_n be a random sample from a distribution F(x), let $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ be the corresponding ordered sample.

With the modern emphasis on robustness (see Huber [8]), two classes of estimators of the location parameter have been widely investigated: The M-estimator \hat{T}_n defined as a solution of

$$\sum_{i=1}^{n} \phi[(X_{i} - \theta) / \hat{V}_{n}^{*}] = 0$$

where \hat{V}_n^* is a scale estimator.

The L-estimator \hat{T}_n defined as

$$\hat{T}_n = n^{-1} \sum_{i=1}^n J[i/(n+1)] X_{(i)}$$

where J satisfies $\int_0^1 J(t)dt = 1$.

Key words: M-estimator, L-estimator, influence curve, Robust estimation, step estimator.

In M-estimation an observation is weighted according to its magnitude while in L-estimation it is weighted according to its rank in the sample. In Section 2 the asymptotic behavior of L-M-estimators which weight an observation according to both its magnitude and its rank is investigated. The findings are compared with known results about L-estimators (Stigler [12]) and M-estimators (Huber [6], [7]).

The third section is devoted to the study of step estimators. If the estimating equation is of the type

$$l(\theta, \hat{V}_n^*) = 0$$

where \hat{V}_n^* is a scale parameter, a one step estimator is defined as

$$\hat{T}_n^{(1)} = \hat{T}_n^* - l(\hat{T}_n^*, \hat{V}_n^*)/l_x(\hat{T}_n^*, \hat{V}_n^*)$$

where l_x is the partial derivative of l(x, y) with respect to x, \hat{T}_n^* and \hat{V}_n^* are a location and a scale estimator given a priori. In Section 3, the asymptotic distribution of L-M step estimators is derived under minimal regularity conditions.

For the estimators defined in Section 2 and their step versions studied in Section 3 it is shown that

$$\left[\hat{\theta}_n - \theta - n^{-1} \sum_{i=1}^n \mathrm{IC}\left(\theta, X_i\right)\right] \text{ is } o_p(n^{-1/2})$$

where IC (μ, x) is Hampel [5] influence curve.

NOTATION. The superscript "*" will denote estimators given a priori, independently of the estimation procedure under consideration.

2. Asymptotic behavior of L-M-estimators

As mentioned in the introduction, the L- and the M-estimators can be subsumed in the following class.

DEFINITION (L-M-estimators). Let J(t) be a weight function defined in [0,1] and $\phi(x)$ be a function defined in R then the L-M-estimator of location \hat{T}_n , is defined as a solution of:

(2.1)
$$\sum_{i=1}^{n} J[i/(n+1)] \phi[(X_{(i)} - \theta)/\hat{V}_{n}^{*}] = 0$$

while the L-M-estimator of scale, \hat{V}_n , is defined as a solution of

$$\sum_{i=1}^{n} J[i/(n+1)]\phi[(X_{(i)}-\hat{T}_{n}^{*})/\theta]=0$$
.

If J(t)=1 the L-M-estimator reduces to M-estimators while if $\psi(x)=x$,

$$\hat{T}_n = \sum_{i=1}^n J[i/(n+1)]X_{(i)} / \sum_{i=1}^n J[i/(n+1)]$$

which is equivalent to the L-estimator of location and if $\psi(x)=|x|^{\alpha}-1$,

$$\hat{V}_{n} = \left[\sum_{i=1}^{n} J[i/(n+1)] | X_{(i)} - \hat{T}_{n}^{*}|^{\alpha} / \sum_{i=1}^{n} J[i/(n+1)] \right]^{1/\alpha}$$

which is equivalent to the L-estimator of scale defined by Bickel and Lehmann [2].

The asymptotic results of this section will be derived from the following theorem:

THEOREM 1. Let J(t) be a bounded variation function defined in [0, 1] and $\phi(x)$ be a function defined in R which can be written as

$$\sum_{i=1}^{n_0} b_i \psi_i(x)$$

where $b_i \in R$, $i=1, 2, \dots, n_0$ and $\{\phi_i\}_{i=1}^{n_0}$ is a sequence of increasing functions. Let \hat{T}_n^* and \hat{V}_n^* be consistent estimators of μ and γ then under the assumptions

A1) J(t) and $\phi[F^{-1}(t)]$ are not discontinuous together, ϕ is continuous at $F^{-1}(t)$ for almost all t.

And either

- A2) i) $(\hat{T}_n^* \mu)$ and $(\hat{V}_n^* \gamma)$ are $o_p(1)$
 - ii) There exists $\delta \in (0, 1/2)$ such that J(t) = 0, $t \notin (\delta, 1-\delta)$ or there exists B > 0 such that $|\phi(x)| < B$, $x \in R$.

Or

- A3) i) $(\hat{T}_n^* \mu)$ and $(\hat{V}_n^* \gamma)$ are $O_p(n^{-1/2})$
 - ii) $\lambda(x, y)$ and $\lambda_H(x, y)$ are continuously differtiable in a neighborhood of (μ, γ) where

$$\lambda(x, y) = \int_0^1 J(t) \phi[(F^{-1}(t) - x)/y] dt$$

$$\lambda_{\scriptscriptstyle H}(x,\,y) = \mathrm{E}[\phi_{\scriptscriptstyle H}[(X-x)/y)]]$$

and

$$\phi_{\scriptscriptstyle H}\!(x)\!=\!\int_{\scriptscriptstyle 0}^{x}\!J[F(y)]d\phi(y)\!-\!\mathrm{E}\left[\int_{\scriptscriptstyle 0}^{\scriptscriptstyle (X-\mu)/\tau}\!J[F(y)]d\phi(y)\right]$$

iii) There exist $\eta > 0$, M_0 in N such that $|J(t)-J(s)| < M_0|t-s|$ for both s and t in $[0, \eta]$ or in $[1-\eta, 1]$.

There exist M_1 , M_2 in N such that F is absolutely continuous in $\{x \in R : |x| > M_1\}$ and f(x), the density of F, satisfies f(x) and $|xf(x)| < M_2$ for $|x| > M_1$

iv) $\mathrm{E}\left[\phi_{H}^{2}[(X-x)/y]\right]$ is finite in a neighborhood of (μ, γ) . Then the following is true:

$$egin{aligned} n^{-1} \sum_{i=1}^n \left\{ J[i/(n+1)] \phi[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*]
ight. \ & - \lambda(\hat{T}_n^*, \, \hat{V}_n^*) - \phi_H[(X_{(i)} - \mu)/\gamma]
brace \ is \ o_p(n^{-1/2}) \ . \end{aligned}$$

The proof of this result is technical. A sketch of the proof is contained in the appendix while a formal proof is derived in Rivest [11].

Remarks. 1) If $\phi(x)=x$, $\lambda(x,y)=\left[\int_0^1 J(t)(F^{-1}(t)-x)dt\right]/y$ and if \hat{T}_n^* is the L-estimator corresponding to J(t), Theorem 1 implies that (taking $\hat{V}_n^*=\gamma=1$):

$$n^{1/2} \Big\{ \hat{T}_n^* - \mu - n^{-1} \sum_{i=1}^n \left[\int_0^{X_i - \mu} J[F(y)] dy - \mathrm{E} \left[\int_0^{X_i - \mu} J[F(y)] dy \right] \right] \Big\} \ \ \text{is} \ \ o_p(1) \ .$$

This result has been proved by Stigler [12]. It implies the asymptotic normality of L-estimators of location.

2) If J(t)=1 and if \hat{T}_n^* is a consistent root of (2.1), Theorem 1, under assumptions A1) and A2) implies that

$$n^{1/2} \left\{ \lambda(\hat{T}_n^*, \hat{V}_n^*) - n^{-1} \sum_{i=1}^n \phi[(X_i - \mu)/\gamma] \right\} \text{ is } o_p(1).$$

This is a special case of a theorem of Huber [7] used to establish the asymptotic normality of maximum likelihood estimators under nonstandard conditions.

3) Define $\nu(F) = \int_0^1 J(t) \phi[(F^{-1}(t) - \mu(F))/\gamma(F)] dt$ where μ and γ are the functionals corresponding to \hat{T}_n^* and \hat{V}_n^* . After some algebra the influence curve (Hampel [5]) of ν , IC (ν, x) , is shown to be equal to:

$$\psi_{H}[(x-\mu)/\gamma] + \mathrm{IC}(\mu, x)\lambda_{x}(\mu, \gamma) + \mathrm{IC}(\gamma, x)\lambda_{y}(\mu, \gamma)$$

where λ_x and λ_y denote the partial derivatives of λ with respect to x and y respectively and IC (μ, x) , IC (γ, x) are the influence curves of μ and γ respectively.

Now assuming $\left[\hat{T}_n^* - \mu - n^{-1} \sum\limits_{i=1}^n \mathrm{IC}\left(\mu, X_i\right)\right]$ and $\left[\hat{V}_n^* - \gamma - n^{-1} \sum\limits_{i=1}^n \mathrm{IC}\left(\gamma, X_i\right)\right]$ are $o_p(n^{-1/2})$, $(\hat{T}_n^* - \mu)$ and $(\hat{V}_n^* - \gamma)$ are $O_p(n^{-1/2})$, therefore

$$\lambda(\mu,\gamma)-\lambda(\hat{T}_n^*,\hat{V}_n^*)+(\hat{T}_n^*-\mu)\lambda_x(\mu,\gamma)+(\hat{V}_n^*-\gamma)\lambda_y(\mu,\gamma)$$
 is $o_p(n^{-1/2})$

since λ is differentiable at (μ, γ) . With the influence curve the conclusion of Theorem 1 can be reformulated as

$$\left[n^{-1} \sum_{i=1}^{n} J[i/(n+1)] \phi[(X_{(i)} - \hat{T}_{n}^{*})/\hat{V}_{n}^{*}] - \nu(F) - n^{-1} \sum_{i=1}^{n} \mathrm{IC}\left(\nu, X_{i}\right)\right] \text{ is } o_{p}(n^{-1/2}).$$

Filippova [4] has established this type of result for several statistics.

4) The assumption ϕ can be written as a weighted sum of increasing functions is not too restrictive. It is easily shown (see Rivest [11]) that any function with a finite number of minima and maxima can be decomposed in such a way. All the functions ϕ used in robust estimation (see Andrews et al. [1]) are of that type.

Theorem 2 (Asymptotic normality of L-M-estimators of location). Under the assumptions

- i) ϕ is increasing and J is positive,
- ii) $\lambda_x(\mu, \gamma) \in (-\infty, 0)$ where μ is defined as the solution of $\lambda(x, \gamma) = 0$,
- iii) \hat{V}_n^* , the scale estimator, satisfies:

$$n^{1/2} \left[\hat{V}_n^* - \gamma - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\gamma, X_i \right) \right] is \ o_p(1)$$
 ,

iv) A1) and A3) of Theorem 1,

the L-M-estimator \hat{T}_n based on J and ψ satisfies

$$n^{1/2} \Big[\hat{T}_n - \mu - n^{-1} \sum_{i=1}^n IC(\mu, X_i) \Big]$$
 is $o_p(1)$

where

$$IC(\mu, x) = -\left\{ \phi_H[(x-\mu)/\gamma] + \lambda_v(\mu, \gamma) IC(\gamma, x) \right\} / \lambda_x(\mu, \gamma)$$

is Hampel's influence curve for μ .

The theorem is also true under assumptions A1) and A2) of Theorem 1 provided J is 0 near 0 and 1 or ϕ is bounded.

Note that this result implies that $n^{1/2}(\hat{T}_n-\mu)$ is asymptotically $N[0, \mathbb{E}\left[\mathrm{IC}^2\left(\mu,X\right)\right]\right]$.

PROOF. For any $g \in R$,

$$P[n^{1/2}\lambda(\hat{T}_n, \gamma) < g] = P(\hat{T}_n > k_n)$$

where k_n is defined by $n^{1/2}\lambda(k_n, \gamma) = g$. Since λ is differentiable at (μ, γ) , $n^{1/2}(k_n - \mu)$ is O(1). As in Huber [6], $P(\hat{T}_n > k_n)$ and

$$P\left[n^{-1/2}\sum_{i=1}^{n} \{J[i/(n+1)]\phi[(X_{(i)}-k_n)/\hat{V}_n^*] - \lambda(k_n, \gamma)\} \ge -g\right]$$

reach the same limit as $n \to \infty$. Applying Theorem 1 under the assumptions A1) and A3)

$$n^{-1/2} \sum_{i=1}^{n} \{J[i/(n+1)] \phi[(X_{(i)} - k_n)/\hat{V}_n^*] - \lambda(k_n, \hat{V}_n^*) - \phi_H[(X_i - \mu)/\gamma]\} \text{ is } o_p(1).$$

Therefore

$$\lim_{n} P[n^{1/2}\lambda(\hat{T}_{n}, \gamma) < g]$$

$$= \lim_{n} P\left[n^{-1/2} \sum_{i=1}^{n} \{ \psi_{H}[(X_{i} - \mu)/\gamma] + \lambda(k_{n}, \hat{V}_{n}^{*}) - \lambda(k_{n}, \gamma) \} \ge -g \right].$$

This shows that $n^{1/2}\lambda(\hat{T}_n,\gamma)$ is asymptotically normal. Since $\lambda_x(\mu,\gamma)$ is nonzero $n^{1/2}(\hat{T}_n-\mu)$ is asymptotically normal by Slutsky's Theorem. Applying Theorem 1 with \hat{T}_n and \hat{V}_n^* yields

$$n^{1/2} \left[\lambda(\hat{T}_n, \hat{V}_n^*) + n^{-1} \sum_{i=1}^n \phi_H[(X_i - \mu)/\gamma] \right] \text{ is } o_p(1)$$

which is equivalent to:

$$n^{1/2} \left\{ \hat{T}_n - \mu + n^{-1} \sum_{i=1}^n \left[\phi_H [(X_i - \mu)/\gamma] + (\hat{V}_n^* - \gamma) \lambda_y(\mu, \gamma) \right] / \lambda_x(\mu, \gamma) \right\} \text{ is } o_p(1)$$

since λ is differentiable at (μ, γ) . Replacing $n^{1/2}(\hat{V}_n^* - \gamma)$ by $n^{-1/2} \cdot \sum_{i=1}^n \mathrm{IC}(\gamma, X_i)$ concludes the proof. Q.E.D.

- Remarks. 5) The assumption ϕ is increasing and J is positive implies that the L-M-estimator is uniquely defined. If this assumption is not met, one has to use the method of Huber [7] to prove the asymptotic normality: first find a consistent solution to (2.1) then Theorem 1 under the assumptions A1) and A2) yields the asymptotic normality of this solution.
- 6) If F, J and ϕ are symmetric, $\lambda_{\nu}(\mu, \gamma) = 0$ and the influence curve of \hat{T}_n is an odd function. If the influence curve of \hat{V}_n^* is even, as is usually the case, \hat{T}_n is asymptotically independent of \hat{V}_n^* .
- 7) For M-estimator, Carroll [3] has shown that $n(\log n)^{-1} \Big[\hat{T}_n \mu n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\mu, X_i \right) \Big]$ is O(1) almost surely provided ϕ is a smooth function.
- 8) If two L-M-estimators are estimating the same parameter and have the same influence curve, their difference is $o_p(n^{-1/2})$ as conjectured by Hampel [5], see also Jaeckel [9].

Along the lines of Huber [6], one proves:

COROLLARY 1 (Efficient estimation). Assuming that F is a symmetric distribution and that \hat{V}_n^* is a consistent estimator of γ , for any

strictly positive function J(t), symmetric about 1/2 with bounded variation, there exists a function ϕ ,

$$\phi(y) = \int_0^y [J(F(x))]^{-1} d\left(-\frac{f'(x)}{f(x)}\right)$$

such that the L-M-estimator \hat{T}_n based on J and ϕ is efficient for μ .

Example 1. Let F be logistic, i.e. $F(x) = (1 + e^{-x})^{-1}$, then

$$-\frac{f'}{f}(x)=(e^x-1)/(e^x+1)$$
.

If J(t)=1 and $\phi(x)=(e^x-1)/(e^x+1)$, the efficient M-estimator is obtained. If J(t)=t(1-t) and $\phi(x)=x$, this is the efficient L-estimator. If

$$J(t) = \begin{cases} t^2 & t < 1/2 \\ (1-t)^2 & t \ge 1/2 \end{cases}$$

and

$$\psi(x) = \begin{cases} 1 - e^{-x} & x \ge 0 \\ e^x - 1 & x < 0 \end{cases}$$

the L-M-estimator based on J and ϕ is efficient.

For scale estimators, the same reasoning yields:

THEOREM 3 (Asymptotic normality of L-M-estimators of scale). If the L-M-estimator \hat{V}_n based on ψ and J is uniquely defined, under assumptions similar to the ones of Theorem 2,

$$n^{1/2} \left[\hat{V}_n - \gamma - n^{-1} \sum_{i=1}^n IC(\gamma, X_i) \right] \text{ is } o_p(1)$$

where

IC
$$(\gamma, x) = \{-\psi_H[(x-\mu)/\gamma] - \lambda_x(\mu, \gamma) \text{ IC } (\mu, x)\}/\lambda_y(\mu, \gamma)$$

is the influence curve of γ .

Remark. 9) As for location estimators one can find an infinity of efficient L-M-estimator of scale. Under symmetry it is easily shown that \hat{V}_n is asymptotically independent of \hat{T}_n^* (compare with Bickel and Lehmann [2]).

Example 2 (The median deviation). If

$$\phi(x) = \begin{cases} -1 & |x| < 1 \\ 1 & |x| > 1 \end{cases}$$

and if \hat{T}_n^* is the median the M-estimator of scale \hat{V}_n is the median deviation. Here

$$\lambda(x, y) = P(|X-x|/y > 1) - P(|X-x|/y < 1)$$
.

Assuming that F(x) is symmetric with respect to μ , $\gamma(F) = F^{-1}(3/4) - \mu$,

$$\lambda_y(\mu, \gamma) = -4f[F^{-1}(3/4)]$$

and

$${\rm IC}\left(\gamma,\,x\right) = \left\{ \begin{array}{cc} -1/4f[F^{-1}(3/4)] & |x| < 1 \\ \\ 1/4f[F^{-1}(3/4)] & |x| > 1 \end{array} \right.$$

According to Theorem 1, under assumptions A1) and A2), \hat{V}_n is asymptotically normal provided $f(\mu)$ and $f[F^{-1}(3/4)]$ exist and are nonzero.

3. Step estimators

Consider now a one step L-M-estimator of location

$$\hat{T}_n^{(1)} = \hat{T}_n^* - l(\hat{T}_n^*, \hat{V}_n^*) / l_x(\hat{T}_n^*, \hat{V}_n^*)$$

where

$$l(x, y) = n^{-1} \sum_{i=1}^{n} J[i/(n+1)] \phi[(X_{(i)} - x)/y]$$

and l_x is the partial derivative of l with respect to x. If $\phi(x)=x$, note that $\hat{T}_n^{(1)}=\hat{T}_n$ the L-estimator corresponding to J. The asymptotic distribution of $\hat{T}_n^{(1)}$ is now derived.

THEOREM 4. Under the assumptions

- i) $n^{1/2} \left[\hat{T}_n^* \mu n^{-1} \sum_{i=1}^n IC(\mu, X_i) \right]$ and $n^{-1/2} \left[\hat{V}_n^* \gamma n^{-1} \sum_{i=1}^n IC(\gamma, X_i) \right]$ are $o_i(1)$.
- ii) The pairs (J, ψ) and (J, ψ') satisfy A1) and A3) (or A2) if J is 0 near 0 and 1 or $\psi(x)$ and $\psi'(x)$ are bounded) of Theorem 1.

The one step L-M-estimator $\hat{T}_n^{(1)}$ satisfies

$$n^{1/2} \Big[\hat{T}_n^{\text{(1)}} - \mu^{\text{(1)}} - n^{-1} \sum_{i=1}^n \text{IC} (\mu^{\text{(1)}}, X_i) \Big] \text{ is } o_p(1)$$

where

$$\begin{split} \mu^{\text{\tiny (1)}}(F) &= \mu(F) - \lambda(\mu, \gamma)/\lambda_x(\mu, \gamma) \\ &\text{IC } (\mu^{\text{\tiny (1)}}, x) = \{ -\phi_H[(x-\mu)/\gamma] - \lambda_y(\mu, \gamma) \text{ IC } (\gamma, x) \}/\lambda_x(\mu, \gamma) \\ &+ \lambda(\mu, \gamma) R^{\text{\tiny (1)}}(\mu, \gamma) \end{split}$$

Q.E.D.

is Hampel's influence curve for $\mu^{(1)}$ and

$$R^{(1)}(\mu, \gamma) = \text{IC} [\lambda_x(\mu, \gamma), x]/\lambda_x^2(\mu, \gamma).$$

 $\left(\lambda_x(\mu,\gamma) \text{ is considered as the functional } -\int_0^1 J(t)\phi'[[F^{-1}(t)-\mu(F)]/\gamma(F)]dt/\gamma(F).\right)$

PROOF. If ν_1 and ν_2 are two functionals, it is easily shown that IC $(\nu_1+\nu_2, x)=$ IC $(\nu_1, x)+$ IC (ν_2, x) and IC $(\nu_1/\nu_2, x)=$ [IC $(\nu_1, x)\nu_2-$ IC (ν_2, x) $\cdot \nu_1]/\nu_2^2$ if $\nu_2 \neq 0$. Therefore

(3.1)
$$\operatorname{IC}(\mu^{(1)}, x) = \operatorname{IC}(\mu, x) - \operatorname{IC}[\lambda(\mu, \gamma), x]/\lambda_x(\mu, \gamma)$$

$$-\lambda(\mu, \gamma) \operatorname{IC}[\lambda_x(\mu, \gamma), x]/\lambda_x^2(\mu, \gamma) .$$

(Here, $\lambda(\mu, \gamma)$ is considered as a functional.) By Remark 3)

IC
$$[\lambda(\mu, \gamma), x]/\lambda_x(\mu, \gamma)$$

= $\{\phi_H[(x-\mu)/\gamma] + \lambda_y(\mu, \gamma) \text{ IC } (\gamma, x)\}/\lambda_x(\mu, \gamma) + \text{IC } (\mu, x) .$

Replacing IC $[\lambda(\mu, \gamma), x]/\lambda_x(\mu, \gamma)$ by this quantity in (3.1) yields the desired expression for IC $(\mu^{(1)}, x)$. According to Theorem 1,

(3.2)
$$n^{1/2} \left[l(\hat{T}_n^*, \hat{V}_n^*) - \lambda(\mu, \gamma) - n^{-1} \sum_{i=1}^n IC \left[\lambda(\mu, \gamma), X_i \right] \right] \text{ is } o_p(1).$$

Consider

$$l_x(\hat{T}_n^*, \hat{V}_n^*) = -n^{-1} \sum_{i=1}^n J[i/(n+1)] \phi'[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*]/\hat{V}_n^*$$

since the pair (J, ϕ') satisfies the assumptions of Theorem 1 and since $n^{1/2} \Big[\hat{V}_n^* - \gamma - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\gamma, X_i \right) \Big]$ is $o_p(1)$

(3.3)
$$n^{1/2} \left[l_x(\hat{T}_n^*, \hat{V}_n^*) - \lambda_x(\mu, \gamma) - n^{-1} \sum_{i=1}^n IC \left[\lambda_x(\mu, \gamma), X_i \right] \right] \text{ is } o_p(1).$$

Combining (3.2) and (3.3) proves the result.

Remarks. 10) If μ is a solution of $\lambda(\theta, \gamma) = 0$, i.e. if \hat{T}_n^* and $\hat{T}_n^{(1)}$ are estimating the same parameter, $\hat{T}_n^{(1)}$ has the same asymptotic behavior as the corresponding L-M-estimator. For maximum likelihood estimators a similar conclusion has been reached by LeCam [10].

11) If μ is not a solution of $\lambda(\theta, \gamma) = 0$, $\mu^{(1)}$ is the solution of $\lambda(\theta, \gamma) = 0$ obtained after one iteration of the Newton Raphson procedure starting at μ . Note that $\hat{T}_n^{(1)}$ and \hat{V}_n^* satisfy the assumptions of Theorem 4, therefore $\hat{T}_n^{(2)}$ the two step estimator satisfies:

$$n^{1/2} \Big[\hat{T}_n^{(2)} - \mu^{(2)} - n^{-1} \sum_{i=1}^n \mathrm{IC} \left(\mu^{(2)}, X_i \right) \Big] ext{ is } o_p(1).$$

If the iteration procedure converges, $\mu^{(2)}$ is closer to a solution of $\lambda(\theta, \gamma) = 0$ than $\mu^{(1)}$ and its influence curve is also closer to the influence curve of the corresponding L-M-estimator. Iterating this result $\hat{T}_n^{(k)}$ the k step estimator should be closer to the corresponding L-M-estimator than $\hat{T}^{(1)}$ for l < k.

Now the effect of a lack of robustness of \hat{T}_n^* and \hat{V}_n^* on \hat{T}_n and $\hat{T}_n^{(1)}$ is investigated.

For instance suppose that F is t with 3 degrees of freedom, the location is to be estimated with some robust M-estimator, the scale is unknown. An a priori scale estimator, \hat{V}_n^* has to be used. If \hat{V}_n^* is the standard deviation then \hat{V}_n^* is a consistent estimator of the population standard deviation γ . It is easily seen that \hat{V}_n^* belong to the domain of attraction of a stable law with parameter 3/2. Therefore the rate of convergence of \hat{V}_n^* , $\alpha(\hat{V}_n^*) = \{\sup \beta : n^{1-1/\beta}(\hat{V}_n^* - \gamma) \text{ is } O_p(1)\}$ is 3/2. Will the slow convergence of \hat{V}_n^* affect the convergence of \hat{T}_n ? The next theorem answers this question.

So far we have assumed $\alpha(\hat{T}_n^*) = \alpha(\hat{V}_n^*) = 2$, now this assumption is weakened to $\alpha(\hat{V}_n^*)$ and $\alpha(\hat{T}_n^*) \in (1, 2)$.

THEOREM 5. Assuming

- i) A1) and A2) of Theorem 1 hold.
- ii) $\lambda(x, y)$ is continuously differentiable near (μ, γ) and $\lambda_x(\mu, \gamma) < 0$. Then if
- 1) F is symmetric with respect to μ and J and ψ are symmetric, $\alpha(\hat{T}_n)=2$.
- 2) $\lambda_{\nu}(\mu, \gamma) \neq 0$, $\alpha(\hat{T}_n) = \alpha(\hat{V}_n^*)$.

PROOF. Assume without loss of generality $\mu=0$ and $\gamma=1$. Applying Theorem 1

$$\left[\lambda(\hat{T}_n, \hat{V}_n^*) + n^{-1} \sum_{i=1}^n \phi_H(X_i)\right] \text{ is } O_p(n^{-1/2}).$$

Applying the mean value theorem:

$$\lim_{n} [\lambda(\hat{T}_{n}, \hat{V}_{n}^{*}) - \lambda(0, \hat{V}_{n}^{*})] / \hat{T}_{n} \lambda_{x}(0, 1) = 1$$

in probability. If 1) holds $\lambda(0, \hat{V}_n^*)=0$ and $n^{1/2}\hat{T}_n$ has the same asymptotic distribution as $n^{-1/2}\sum_{i=1}^n \psi_H(X_i)$, i.e. $\alpha(\hat{T}_n)=2$. If 2) holds for any $\beta \leq 2$,

$$\begin{split} \lim_n \mathrm{P} \left(n^{1-1/\beta} \hat{T}_n > g \right) \\ = & \lim_n \mathrm{P} \left[n^{1-1/\beta} \left(\lambda(0, \, \hat{V}_n^*) + n^{-1} \sum_{i=1}^n \phi_H(X_i) \right) > \lambda_x(0, \, 1) g \right] \\ \text{and } \alpha(\hat{T}_n) = \alpha(\hat{V}_n^*). \end{split}$$
 Q.E.D.

For one step estimators,

THEOREM 6. Assuming that

- i) (J, ϕ) and (J, ϕ') satisfy A1) and A2) of Theorem 1.
- ii) $\lambda(x, y)$ has continuous third partial derivatives near (μ, γ) and $\lambda_x(\mu, \gamma) < 0$.

If

- a) F is symmetric with respect to μ , ϕ and J are symmetric;
- b) $\lambda_{xy}(\mu, \gamma)$ and $\lambda_{(8x)}(\mu, \gamma)$ are nonzero $\left(\lambda_{(8x)} = \frac{\partial^3}{\partial x^3} \lambda(x, y)\right)$,

$$\alpha(\hat{T}_n^{(1)}) = \min \{ \alpha^3(\hat{T}_n^*), \alpha(\hat{T}_n^*) \alpha(\hat{V}_n^*), 2 \}.$$

If

c) $\lambda(\mu, \gamma)$, $\lambda_{xv}(\mu, \gamma)$, $\lambda_{(2x)}(\mu, \gamma)$ are nonzero,

$$\alpha(\hat{T}_n^{(1)}) = \min \left[\alpha(\hat{T}_n^*), \alpha(\hat{V}_n^*) \right].$$

PROOF. Assume without loss of generality $\mu=0$ and $\gamma=1$. As in Theorem 4, $l(\hat{T}_n^*, \hat{V}_n^*)/l_x(\hat{T}_n^*, \hat{V}_n^*) - \lambda(0, 1)/\lambda_x(0, 1)$ minus

$$\begin{split} & \left[\lambda(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) + n^{-1} \sum_{i=1}^{n} \phi_{H}(X_{i}) - \lambda(0, 1) \right] \middle/ \lambda_{x}(0, 1) \\ & - \lambda(0, 1) \left[\hat{V}_{n}^{*} \lambda_{x}(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) - \lambda_{x}(0, 1) - n^{-1} \sum_{i=1}^{n} \phi_{H}^{(1)}(X_{i}) \right] \middle/ \lambda_{x}^{2}(0, 1) \\ & + \lambda(0, 1)(\hat{V}_{n}^{*} - 1) \middle/ \lambda_{x}(0, 1) \end{split}$$

is $o_p(n^{-1/2})$ where $\psi_H^{(1)}(x)$ is the ψ_H function corresponding to J and ψ' . If a) and b) hold, $\alpha(\hat{T}_n^{(1)})$ equals

(3.4)
$$\alpha[\lambda_x(0,1)\hat{T}_n^* - \lambda(\hat{T}_n^*,\hat{V}_n^*)]$$

note that $\lambda(x,1)$ is odd, hence $\lambda_{(2x)}(x,1)$ is also odd, i.e. $\lambda_{(2x)}(0,1)=0$. Now using a Taylor series expansion and the fact that $\lambda(0, \hat{V}_n^*)=0$, (3.4) is equal to

$$\alpha\{\hat{T}_n^*[\lambda_x(0,1)-\lambda_x(0,\hat{V}_n^*)]-(\hat{T}_n^*)^3\lambda_{(3x)}(0,1)\}.$$

This proves the first part. If c) holds,

$$\alpha(\hat{T}_{n}^{(1)}) = \alpha[\hat{V}_{n}^{*}\lambda_{x}(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) - \lambda_{x}(0, 1)]$$

$$= \min \left[\alpha(\hat{V}_{n}^{*}), \alpha(\hat{T}_{n}^{*})\right]. \qquad Q.E.D.$$

Remark. 12) If F is symmetric, note that $\alpha(\hat{T}_n^{(1)}) \ge \alpha(\hat{T}_n^{(2)}) \cdots$ therefore to increase the number of iterations improves the rate of convergence of the estimator.

Appendix. Sketch of the proof of Theorem 1

Without losing generality it is assumed that J(t) is positive increasing bounded, $\mu=0$ and $\gamma=1$ and $\phi(x)$ is increasing.

LEMMA 1. Under assumptions A2)-ii) or A3)-iv)

$$[\lambda(\hat{T}_n^*, \hat{V}_n^*) - \lambda_n(\hat{T}_n^*, \hat{V}_n^*)]$$
 is $o_n(n^{-1/2})$

where
$$\lambda_n(x, y) = n^{-1} \sum_{i=1}^n J[i/(n+1)] \phi \{ [F^{-1}[i/(n+1)] - x]/y \}$$
.

PROOF. Write $\phi = \phi_1 + \phi_2$ where $\phi_1(x) = \phi(x)$ if $x \ge 0$ and $\phi_2(x) = \phi(x)$ if x < 0. Assume $\phi(0) = 0$, i.e., ϕ_1 is positive increasing. For δ large enough such that $(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^* > 0$ if $t > \delta$,

$$\lambda_1(\hat{T}_n^*, \hat{V}_n^*) = \sum_{i=[n\delta]+1}^n \int_{(i-1)/n}^{i/n} J(t) \psi_1[(F^{-i}(t) - \hat{T}_n^*)/\hat{V}_n^*] dt$$
.

Since the product of two positive increasing functions is positive increasing,

$$\lambda_1(\hat{T}_n^*, \hat{V}_n^*) < \lambda_{n1}(\hat{T}_n^*, \hat{V}_n^*) + \int_{n-1}^n J(t)\phi_1[(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^*]dt$$
.

Under A2)-ii) or A3)-iv),

$$\lim_n \, n^{1/2} \int_{n-1}^n J(t) \phi_1[(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^*] dt = 0 \ .$$

Bounding $\lambda_1(\hat{T}_n^*, \hat{V}_n^*)$ from below yields the result for ϕ_1 . To prove the result for ϕ_2 it can be assumed that J(t) is negative increasing, hence $J(t)\phi[(F^{-1}(t)-\hat{T}_n^*)/\hat{V}_n^*]$ is positive decreasing as a product of negative increasing functions. The reasoning is similar to the first part.

Q.E.D.

A) Proof under A1) and A2)

Using this result,

$$n^{-1/2} \sum_{i=1}^{n} J[i/(n+1)] \phi[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*] - \lambda(\hat{T}_n^*, \hat{V}_n^*)$$

can be written as $h_n(Z^{(n)}(\cdot))$ where h_n is a random function defined by

$$\begin{split} h_n(x(\,\cdot\,)) &= n^{-1/2} \sum_{i=1}^n J[i/(n+1)] \{ \phi[[F^{-1}[i/(n+1) + n^{-1/2}x[i/(n+1)]] - \hat{T}_n^*]/\hat{V}_n^*] \\ &- \phi[[F^{-1}[i/(n+1)] - \hat{T}_n^*]/\hat{V}_n^*] \} \end{split}$$

and $Z^{(n)}(\cdot)$ is the empirical process. Heuristically for large n, $h_n(Z^{(n)}(\cdot))$ can be written as:

$$n^{-1} \sum_{i=1}^n J[i/(n+1)] Z^{(n)}[i/(n+1)] \left[\frac{d}{dt} \phi[(F^{-1}(t) - \hat{T}_n^*)/\hat{V}_n^*] \right]_{t=i/(n+1)}$$

this random variable should therefore converge to $\int_0^1 J(t)Z(t)d\phi[F^{-1}(t)],$ Z(t) is the Brownian Bridge.

Lemma 2 of Rivest [11] contains a rigorous proof of this statement under assumption A2) (i.e. $|\phi|$ is bounded or J is 0 near 0 and 1).

Using a similar argument it is shown that $n^{-1/2} \sum_{i=1}^{n} \phi_H(X_i)$ converges to

$$\int_0^1 Z(t) d\phi_H [F^{-1}(t)]$$
 .

Now since $d\phi_H[F^{-1}(t)] = J(t)d\phi[F^{-1}(t)]$ the two random variables under consideration converge to the same limit. This proves the theorem under A1) and A2).

B) Proof under A1) and A3)
Consider

$$n^{-1/2} \sum_{i=1}^{n} \left\{ J[i/(n+1)] \phi[(X_{(i)} - \hat{T}_{n}^{*})/\hat{V}_{n}^{*}] - \lambda(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) - \phi_{H}[(X_{(i)} - \hat{T}_{n}^{*})/\hat{V}_{n}^{*}] + \lambda_{H}(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) \right\}.$$

By Lemma 1, this random variable will reach the same limit as

$$({\rm A}.1) \qquad n^{-1/2} \sum_{i=1}^n \int_{[F^{-1}[i/(n+1)] - \hat{T}^*_n]/\hat{V}^*_n}^{[X_{(i)} - \hat{T}^*_n]/\hat{V}^*_n} [J[i/(n+1)] - J[F(x)]] d\phi(x) \; .$$

Using assumption A3), for any $\eta > 0$, it is possible to find $\delta > 0$ such that

$$n^{-1/2}\left|\sum_{i=1}^{[n\delta]}(\cdots)+\sum_{i=n-[n\delta]+1}^n(\cdots)\right|$$
 is $O_p(\eta)$.

The argument used to prove the theorem under A1) and A2) serves to prove

$$n^{-1/2} \sum_{i=[n\delta]+1}^{n-[n\delta]} (\cdots)$$
 is $o_p(1)$.

Therefore (A.1) is $o_{v}(1)$.

Write $\phi_H = \phi_{1H} + \phi_{2H}$ where $\phi_{1H} = \phi_H$ when $\phi_H > 0$, 0 if not. To prove the result it suffices to show that

(A.2)
$$n^{-1/2} \sum_{i=1}^{n} \{ \phi_{jH}[(X_i - \hat{T}_n^*)/\hat{V}_n^*] - \lambda_{jH}(\hat{T}_n^*, \hat{V}_n^*) - \phi_{jH}(X_i) + \mathbb{E}(\phi_{jH}(X_i)) \} \text{ is } o_p(1) \quad \text{for } j=1, 2.$$

Take j=1. For any $\varepsilon>0$, by the assumption on \hat{T}_n^* and \hat{V}_n^* it is possible to find constants C_0 , C_1 such that $|\hat{T}_n^*| < C_0 n^{-1/2}$ and $|\hat{V}_n^*-1| < C_0 n^{-1/2}$ and $|\lambda_{jH}(\hat{T}_n^*, \hat{V}_n^*)| < C_1 n^{-1/2}$ for large n except on a set of probability ε . Similarly one can find C_2 such that

$$|\lambda_{jH}(-C_0n^{-1/2}, 1\pm C_0n^{-1/2})| < C_2n^{-1/2}$$

for large n. Now take $\delta = \varepsilon/(C_2 + C_1)$, since $\phi_{1H}(x)$ is increasing, null for small x, positive for large ones,

$$n^{-1/2} \sum_{i=n-\lceil n\delta \rceil+1}^{n} \psi_{1H}[(X_{(i)} - \hat{T}_n^*)/\hat{V}_n^*] - \lambda_{1H}(\hat{T}_n^*, \hat{V}_n^*)$$

$$\leq \varepsilon + n^{-1/2} \sum_{i=n-\lceil n\delta \rceil+1}^{n} \psi_{1H}[(X_{(i)} - k_n)/s_n] - \lambda_{1H}(k_n, s_n)$$

where $k_n = -C_0 n^{-1/2}$, $s_n = 1 - k_n$. Therefore (A.2) is less than

$$\begin{split} & \varepsilon + n^{-1/2} \sum_{i=1}^{n} \phi_{1H}[(X_{i} - k_{n})/s_{n}] - \lambda_{1H}(k_{n}, s_{n}) - \phi_{1H}(X_{i}) + \operatorname{E}\left(\phi_{1H}(X_{i})\right) \\ & + n^{-1/2} \sum_{i=1}^{n-\lfloor n\delta \rfloor} \phi_{1H}[(X_{(i)} - \hat{T}_{n}^{*})/\hat{V}_{n}^{*}] - \lambda_{1H}(\hat{T}_{n}^{*}, \hat{V}_{n}^{*}) \\ & - \phi_{1H}[(X_{(i)} - k_{n})/s_{n}] + \lambda_{1H}(k_{n}, s_{n}) \; . \end{split}$$

The first summation is summing independent variables with 0 expectation. It is easily seen that its variance goes to 0. The second summation is $o_p(1)$ by an argument used previously hence (A.2) is less than ε . Similarly it can be shown that (A.2) is bigger than $-\varepsilon$ for large n, therefore (A.2) is $o_p(1)$ when j=1. The proof when j=2 is similar.

Q.E.D.

Acknowledgment

This work was done while I was a graduate student. I want to thank my advisers Professors Harold Ruben and Constance van Eeden for their valuable comments and helpful suggestions.

Université Laval

REFERENCES

- [1] Andrews, D. F. et al. (1972). Robust Estimates of Location: Survey and Advances, Princeton University Press, Princeton, N.J.
- [2] Bickel, P. J. and Lehmann, E. L. (1976). Descriptive statistics for nonparametric models, III, Ann. Statist., 4, 1139-1158.
- [3] Carroll, R. J. (1978). On almost sure expansions for M-estimates, Ann. Statist., 6, 314-318.
- [4] Filippova, A. A. (1962). Mises' theorem on the asymptotic behaviour of functionals of empirical distribution functions and its statistical applications, *Theory Prob. Appl.*, 7, 24-57.
- [5] Hampel, F. R. (1974). The influence curve and its role in robust estimation, J. Amer. Statist. Ass., 69, 383-393.
- [6] Huber, P. J. (1964). Robust estimation of a location parameter, Ann. Math. Statist., 35, 73-101.
- [7] Huber, P. J. (1967). The behavior of maximum likelihood estimates under non standard conditions, Proc. 5th Berkeley Symp. Math. Statist. Prob., Univ. of California Press, 221-233.
- [8] Huber, P. J. (1972). Robust statistics: A review, Ann. Math. Statist., 43, 1041-1067.
- [9] Jaeckel, L. A. (1971). Robust estimates of location: Symmetry and asymmetric contamination, Ann. Math. Statist., 42, 1020-1034.
- [10] LeCam, L. (1956). On the asymptotic theory of estimation and testing hypothesis, Proc. 3rd Berkeley Symp. Math. Statist. Prob., Univ. of California Press, 129-156.
- [11] Rivest, L. P. (1979). An asymptotic theorem in the location scale model, Tech. Rep., Univ. of Toronto.
- [12] Stigler, M. S. (1974). Linear functions of order statistics with smooth weight functions, Ann. Statist., 4, 676-693. (Correction, 7, 466.)