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Summary

Strongness and related error evaluations are investigated on type
(B)a, type (A) and type (I) e-equivalence of random variables, which
are based on Kolmogorov-Smirnov distance, a difference of random
variables and Kullback-Leibler information number, respectively. As
an application the Prohorov-LeCam type binomial-Poisson approximation
problem is discussed and is given the best possible constant for the
problem. Similar discussions are made on the negative binomial-Poisson
approximation.

1. Introduction

Let (2, F, P) be an underlying basic probability space and let R
be any abstract space and B a o-field of subsets of R. Denote the
family of all (R, B)-random variables defined over (2, F, P) by F(R, B).
Further, designate by P(R, B, ¢) the family of all (R, B)-random vari-
ables whose probability distributions are absolutely continuous with
respect to a o-finite measure 4 on the measurable space (R, B). Let
X and Y be any two random variables belonging to (R, B) and P*¥
and P” be their respective probability distributions on (R, B).

Let us consider the following measures of discrepancy between the
two distributions :

1.1) D(X,Y; B)EsEuB |P*(E)— P*(E)|
and
1.2) A4X,Y; F)=P(X+Y).

Moreover, if X and Y are members of P(R, B, ), the following quan-
tities are also familiar measures of discrepancy :

(L.3) VX, YiR)=| |f—gldu  [=2D(X,Y; B)],
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(1.4) X, Y;B)=| fin -j]idp :
and

' . — g
(1.4) I(X,Y; R)= SR ginLdp,

where f and g are gpdf’s [¢] of P*¥ and P¥, respectively.
Now, we define the three types of e-equivalence of the random
variables :

DEFINITION 1.1. The two random variables X and Y belonging to
F(R, B) are said to be e-equivalent in the sense of type (B), [or type
(B); e-equivalent] and are denoted by

(1.6) X=Y (B,
if it holds that
(1.6) D(X,Y; B)<e.

DEFINITION 1.2. The random variables X and Y belonging to
F(R, B) are said to be e-equivalent with respect to the difference 4(X,
Y; F) [or type (A) e-equivalent] and are denoted by

(1.7) X=Y (4),
if it holds that
(1.8) 4X,Y; F)<e.

DEFINITION 1.3. The random variables X and Y belonging to
P(R, B, p) are said to be e-equivalent with respect to the K-L informa-
tion [or type (I) e-equivalent] and are denoted by

1.9) X=Y (I),
if it holds that
(1.10) I(X,Y; Ry=min {I(X, Y; R), I(X,Y; R)}<e¢.

It is of interest to compare the strongness of the above approxi-
mate equivalences and to give quantitative error evaluations for them.

Remark 1.1. We can also define other types of e-equivalence
based on the affinity, the W-divergence and so on. However, the above
three types of approximate equivalence seem to be more important
from the practical point of view.

Remark 1.2. The concept [X=Y (B),] is closely related to that
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of [XiY (B);] defined in Matsunawa [11], which was introduced to
give necessary and sufficient conditions for uniform approximate equiva-
lence between X and Y based on some information type measures of
discrepancy. It should be noted, however, that the subject in the
former is to find the bound e as small as possible, whereas in the
latter to estimate ¢=¢(e; 6*) sharply becomes main concern under the
situation that 8*<e for any given £>0. It should be also remarked
that the type (B); e-equivalence is a stronger notion than that of e-
coincidence between two cumulative distribution functions defined by
Meshalkin [12].

2. Inclusion relation of type (B), and type (A) e-equivalence

The concept of the type (B), e-equivalence is meaningful in such
cases where we wish to approximate the distribution P¥ of a discrete
(resp. a continuous) type random variable by another distribution PY
of a discrete (resp. a continuous) type random variable Y. On the
other hand the type (A) e-equivalence of random variables would be
useful in various stochastic approximation problems. Two types of e-
equivalence stated above are of different natures. The former evaluates
the closeness of two probability measures, while the latter that of two
random variables as measurable transformations.

We shall now prove the following

THEOREM 2.1. Type (A) e-equivalence is stromger than type (B),
1.e., for any random variables X and Y belonging to F(R, B), and for
any €>0, it holds that

2.1) X=Y AH=X=Y (B),.
Proor. It suffices to show that
2.2) DX,Y; B)=4X,Y; F).

Let A={w; X(w)# Y(w)}. Then, for any X and Y, belonging to
F(R, B), for any measurable set E € B, it holds that
(2.3) PX(E)—PY*(E)=P (X '(E)—P (Y Y(E))
=P (X(E)NA)UX(E)NA))
—P(Y(E)NA)U(YH(E)NAY))
=P (XY E)NA)—-P (Y Y(E)NA)
<max (P (X Y(E)NnA), P(Y(E)NA))
=P(4),

from which we get (2.2).
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Remark 2.1. Weaker versions of (2.1) are useful, too. Let F(x)
and G(x) be cdf.’s of random variables X and Y, respectively. One of
the versions is

(2.4) sup | F(2)—G(2)|=P (X#Y),

which is found in Hodges and LeCam [2]. They evaluated the right
hand probability for the Poisson approximation problem to Poisson-
binomial distribution.

Instead of (2.4) we are sometimes required a directed evaluation as

F(x)—Gx)=P (X<Y) [£P(X#Y)],

for any real z, which is obtained in a similar manner as in the proof
of the above theorem. To estimate the probability P (X<Y) often
oceurs. For instance, let X be a stress loaded to a material with
strength Y. Then, the material has no failure whenever X<Y, and
the estimation of the probability is of interest in the field of reliability
theory. Here, assume that the two random variables are independent
and that a<X<b and ¢<Y=<d, where a, b, ¢ and d are extended real
numbers. Then, we can represent the probability as

d _ d

px<y)=('[{"" aF@]dcw) = Fu)-Fouew
b d b
=['[[" acw]ir@ = 1-6@narF@).
allz, e

Let us consider an example. Suppose X and Y are independently dis-
tributed according to N(uyx, o%) and N(uy, %), respectively, then

p (X< Y)=dj((ﬂy—#x)/~/ 0;+0'2X) ’

@ being the distribution function of the standard normal distribution
N(0,1) (cf. Church and Harris [1]). Of course, in this case the RHS
term of (2.5) in the brackets is meaningless as a bound because of
PX#Y)=1.

Next, we investigate the implication relation between two types
of e-equivalence, type (4) and type (I). Let X and Y be in P(R, B, p).
The following theorem shows that the above two types of e-equivalence
are incomparable.

THEOREM 2.2. (i) type (A) is mot mecessarily stronger than type
(I), and (ii) type (I) is mot stromger than type (A).

PrOOF. (i) To prove the statement we shall consider the following

Example 2.1. Assume that (2, F, P) is the Wiener probability
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space, namely, 2=[0, 1), F is the o-field of Borel subsets of 2 and P
is the usual Lebesgue measure defined only for sets belonging to F.
Let = be any given number such that 0<7z<0.8 and let J; (i=1, 2, 3)
be the intervals defined by J;=[0, 1—z*{1+exp (—1/7%)}), Jo=[1—7*{1+
exp (—1/7%)}, 1—z*exp (—1/7%)) and J,=[1—r*exp(—1/c*, 1). Further,
let p=1—7*{1+exp (—1/%}, p,=1% py=r'exp(—1/7%) and a; (i=1, 2, 3)
be some positive constants.

Under the above set-up consider the following random variables
defined by

a/pw, if wed;,
X(w)=y 0+ a/p,(0—py), if wed,,
a1+ A+ s/ ps (0—D1—Dy) if weds,

and
a/prw, if wedy,
Y(w)=1 a;+a,+ay/p-(0—py) , if wed,,
ay+ /Dy (0 —D1—D2) » if weds.

Thus, the pdf.’s of X and Y are respectively given by
[1—7*{14exp (1—1/z%}]/a,, if 0gz<a,,

*lay, if a,=x<a;+a,,

fx)= .
7t exp (—1/7%)/a; , if a,+a,sx<a,+a,+a,,
0, otherwise ,

and

f(@), if 0=x<ay,
7t exp (—1/7%)/ay, if ,=w<a,+a,,

g(x)= .
*lay, if o, +a,Zx<a+a,+a;,
0, otherwise .

Then, it is easily seen that

P (X#Y)<P (J))+P (Ji) =p,+py=7{1 +exp (—1/c%)} <27,

L Y B={" fin(figde

a;tay 1 a)tas+ag 4 5
=S r/al-Fdw+S v exp (—1/e%)ag- (—1/c")de

ay a)tay
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=(1/*){1—exp (—1/r")} >1/(27%)

and
L(X, Y; B)={"_gn (9/f)de=(1/s) (1—exp (— 1/} > 1/(2c"

Since 7 is an arbitrary positive number such that 0<r<0.8, the above
results prove the assertion (i).
(ii) To prove the statement (ii) we shall use the following

Example 2.2. Suppose that (2, F, P) is the Wiener probability
space as in the preceding example. Let r be any given number such
that 0<z<1. Let I, J; (:=1,2) be subintervals of 2 respectively
defined by I,=[0,1—7%, L=[1-7%1), J;=[0,1—7%) and J,=[1—7% 1).
Then, P (I))=1—-7<*=p,, P (L)=1'=p, P (J))=1—-1*=¢q,, P (J)=r'=q,.

Under the above situation let us consider the following real ran-
dom variables defined by

1-7)/pw, ifwel,
X(w)=
1—7t4+7/pe(0—p), fwel,
and
1-7)/g;w, if wed;,
Y(w)=
1—T+T/qz'(w'—‘q1)’ if O)GJZ.
Thus, the pdf.’s of X and Y are respectively given by
( 1+, if 0gs2<1l—7,
f@)=1 =, if 1—-r=52<1,
0, otherwise ,
and
147472, if 0g2e<1l—17,
g(x)=< %, if l—r=<2<1,
0, otherwise .
Then,

P(X#Y)=1-P(X=Y)=1-0=1,

1
KX YiB=|  @+om ﬂ%dy+s cIn Sdp

[1-r,1)

—(1—,2 — 7* ) 2 _1_ 2 l 3
a r)ln(l Trer s +7 lnr<T lnz_<r T
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and

. Py 2 1+747? S 21 T
I(X,Y; R)= Sw_r) Aot au | i S

=1—7%In <1—|— li >+'L'2 In r<2¢% 424,

T

Since z is an arbitrary positive number, such that 0<r<1, it holds
that XY (I) with e=min(r—7% 2:°+7*) but X£Y (4) does not
hold, which completes the proof of the theorem.

3. A quantitative evaluation of the type (B), s-equivalence
by the K-L information number and its applications

In the practical situations direct calculations of the distance D(X,
Y; B) are often difficult, in which cases it is sometimes required to
approximate the quantity as accurately as possible. It is seen that
(B), e-equivalence is a weaker concept than type (I) approximate one
(cf. Matsunawa [11]). But, the K-L information number I(X, Y; R) (or
I(X,Y; R)) is easy to calculate for a fairly wide class of distributions.
Moreover, the information number is useful to give a considerably
good upper bound for D(X, Y; B) as follows;

THEOREM 3.1. Let I=min[I(X,Y;R), I(X,Y; R)] then it holds
that

(3.1) D(X,Y; B)=min [5(I), {(I)]
where

(3.2) n(I)=[1—exp (—I)]'"*

and

(3.3) L) =[a(I)+b(I)—175/264]" (=VI]2),
where

(3.4  a)=lD)+VeD+r1", b=l — VD) +r
with
(3.5) r=177275/69696 , q(I)=15751/704+49214375/18399744 .

The equality in (3.1) holds if and only if f=g (a.e. p), in which case
D(X,Y; B)=0.

Proor. The bound 7(I) is the same one given in Lemma 2.1 in
Matsunawa [8]. To derive the upper bound {(I) we can use the Kraft-
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Schmitz inequality [6],

in L4 (1—2)In 122 2oy + Lo —y)-252
y 1-y 9

1575

(z—y)°

for 0<x<1 and 0<y<1l. By the same manner as in [8], it can be
seen that

I(X,Y; R)22[D(X, Y; B)}'+ WXYmH3WWMYBw

Therefore, it remains to solve the inequality in D(X,Y; B):
Db+ (175/88) D*+(1575/176) D* — (1575/352)I<0 , (0=D<Y1),
which is equivalent to
rd)=d'+3rd—2¢(I)<0,  (175/264<d=D*—175/264 < 439/264) ,

where r and q(I) are quantities given in (3.5). Since r*4¢*>0, the
equation A(d)=0 has only one real root dy=dy(I)=a(I)+b(I) which is
easily seen less than 175/264. Then, d<min (dy(I), 175/264) and hence
D=<min (d((I)—175/264, 1). Here, noticing the fact that »(I)<1 we
have D<min [y(I), {(I)], which completes the proof of the theorem.

The above theorem is useful to the problems of error evaluation
in the sense of type (B), approximation between two probability dis-
tributions, if a related K-L information number is evaluated sharply.
Concerning this kind of problems Vervaat [15] along the line of Ikeda’s
work [3] gave some error evaluation essentially in the above (B), sense
between the binomial or negative binomial distribution and the Poisson
distribution by estimating the information numbers accurately. He,
however, resorted to a less inferior bound than ours in (3.1), so his
results can be improved as shown below.

Let for k,n=0,1,2,--., >0, 0<p<1, p+qg=1, 21>0,

be(n, p)= ( Z )p"q""‘ ,

cda, )= (“_Ichrk >:o“q’° ,

1 AF
P(2)= elk' .

In this case the underlying measure space (R, B, p) should be under-
stood such that R is the set of all nonnegative integers, B is the o-
field of all subsets of R, and p is the counting measure on R. For
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comparisons with the well known results [2], [5], [7], [13], [14], [15] we
shall evaluate the variational distance V(-, -; R) defined by (1.8) which
is equivalent to 2D(-, -; B).

THEOREM 3.2 (Binomial-Poisson approximation). Let

(3.6) Vi(n, p)=3; [bim, p)—pulnp)|
Then, for 0<p<1 it holds that
(3.7 Vin, p)<2 min [2(L), (I,

where

(38)  L=3bn, p)In [b(n, P)/p.(np)]

: P _1 _m_ p1—p)(71—98p+32p")
sminlgi gy 5 0P ooy )

=1*,

and asymptotically
(3.9) L~—2m(-p)-L=L,,

provided that ng — co as n — oo,

From this result, we can give a positive answer to a conjecture
due to Vervaat [15]:

COROLLARY 3.1. For 0<p<1 it holds that
(3.10) Vi(n, p)=2p,

where the equality sign hold for p=0 and p=1 with n=k— oco. The
constant 2 in (3.10) is the best possible one.

PrROOF OF THEOREM 3.2. The bound 2%/ {2(1—p)}=I% in (3.8) was
given by Vervaat [15]. Thus, we shall prove another bound in the
inequality. We have

n!

—_— = n kn—Fk Yo.
(3.11) Il—nqlnq+np+§2<k>pq In ity

Now let us evaluate the summation term sharply.
Using a modified Stirling formula of the form (cf. Matsunawa [9],

[10]):
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3.12) In I“(x+1)=—;- In 27+ (x+%) In (ac+1)—(x+1)+-12(x1—+1)—R(x)

(x>-1)
with
1
360(x+1) (x+2)(x+3)

< 1 + 1 < 49
360(x+1)(x+2)(x+3) 32(x+1Xx+2)(x+3) 8640(x+1)

(8.13) 0< < R(z)

we can see that

n ﬁ!)‘!;;"_< (n—l—-é—) In <1+%> — (n—k—i—%) In <1—%> —k=uw(k),

for 2<k<m. Next, we must evaluate the quantity u(k). To this end
let us introduce the function u(¢t) defined on the interval 2=t<n by
changing &k of u(k) into t. It is easily calculated that

W(t)=In (1—.§:L_1> —-é-(n—t—l—l)“

W)= —(n—t+1)—1—%.(n—t+1)-2<o

w't)=—m—t+1)—(n—t+1)2<0
w"'(t)y=—-2(n—t+1)?*-3(n—t+1)"*<0,

then by the generalized Jensen inequality (cf. Vervaat [15]) we have
(.19 E )= (7 )peulk)

<u(E ()+LEO) var g + LB E) 5 5 oy
- 342} s 2}
+n§q{_nq1—|—1_2(nq1+l)’}
4 12a(@—p) {_ 1 1 }

6 (ng+1)* (ng+1)*
é—nqlnq—np——é—lnq—{%—w(z;q)}p

where we have put z=mng and
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1 {3+2(¢—2)}z _ (g—p) _ (5—49)2'+(13—8q)z+6

2(z+1) 12(z+1) 6(z+1)° 12(z+1)

Assume now that ¢ be temporarily fixed number. Since

dw(z; q) _ _ (6—49)2"+(16—89)2+(5+8q)
0z 12(z+1)}

w(z; q)=

then, w(z; q) is a monotone decreasing function of z (=2¢>0). Hence,

(3.15) (e, )iy, )= SHISCH2 B

Combining (3.11), (3.14) and (3.15), we have the desired result

1 (1—p)(71—98p+ 321’2)
[£——In(1-— %, 0 1.
=75 n(l—p)— 6(3—2p)’ 3 (0<p<L])

As for (3.9), since w(z; ¢) — 0 under the condition z2=ng9 — o as n — oo,
then from (3.11) and (3.14) we have

IIS—%ln (1—p)—.121+o(;1q_>.

The reverse side inequality can be similarly shown. Thus, we com-
plete the proof of the theorem.

PrROOF OF COROLLARY 3.1. To prove the inequality Vi(n, »)<2p
(0<p<1) we use Figure 3.1, where the curves

6 2 6
=5
2(1-p) L
__1 p(1—p)(71—98p+32p?)
5 Iy==75In(1-p) - 6(3=2p)7 s
] 114=—%ln(l—p)—5 (Asymptotic case, ng—> as n—>) -

Z (1

Zruy

c(p)

Z 1)

Fig. 3.1. ¢(p) for V(n, p)<c(p):D
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o)=L min (7L, ¢} [; M]
p P

are plotted on the p-c(p) plane. Noticing the facts that lime(p)=1

-0y
and l1m c(p)=2, we can see from the figure at once that c(p)<2 for

0<p<1 For p=0 it is directly calculated that Vi(n,0)=0=2p. Fur-
ther, since it is always true that Vi(n, p)<2 for any p (0<p<1), then
Vi(n, 1)<2=2p automatically holds. In this case we can also see that
Vi(n, 1)=2(1—e"n"/n!) > 2 as n(=k)— co. So, the constant 2 cannot
be improved without extra condition on p. Thus, the proof of the
corollary is completed.

We can also evaluate the Poisson-approximation to the negative
binomial distribution along the same line as the approximation to the
binomial distribution discussed above. We have the following result:

THEOREM 3.3 (Negative binomial-Poisson approximation). Let

(3.16) Vi(a, )= kﬁ; lex(a, ) —pi(ag/p)| .
Then, for 0<p<1 it holds that

(8.17) Vi(e, @) <2 min [»(L), {()],
where L=min (I,; I,) with

(.18)  L=I(c, p)= g‘é ¢i(@, 9) In [eu(a, q)/p(aq/p)]

7 5o s <dp(15)
p +3% < 1+3aq

<
N 3(a+2)

and

(819)  L=IL(c, p)=3 plag/p) In [plag/p)/ex(a, )]

1 q , 6l1¢® ( 61 )
< Llhma- 1461
=g =)=+ <\ 7esa

COROLLARY 3.2. For 0<q<1 it holds that
(8.20) Ve, )<vZ L

PROOF OF THEOREM 3.3. We have

aq a—1+k\ , 1. (@a—14+k)!
(3.21) lnp+ —|—Z< b )pqln_—(a—l)!a" .
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The above summation part can be evaluated as

(3.22) E[‘-? ln<1+ )}éE[’g%{l_ 2(a1+1)—6(a+1§(a+2)}]
=%{1_ 2(a%}-1) 6(a+1;(a+2)}E[k(k 1l

_(at1)g’ {1_ 1 1 }

2p* 2(a+1) 6(a+1)(a+2)

Hence, from (3.21) and (3.22), it follows that

IS 2 qZ qZ 1
‘Sop Up T2ai2r p ( p+q+—'>

2 2 )

-9« a _l__i) .

7 ator »=3<2 > /7
=Lt hes 12 L
= 12(a+2)p° Eﬁv 3q_4 39 3w+2)
= <1+ aq)

7

which proves (3.18) and is an improvement of Vervaat’s result. Now,
we proceed to prove (3.19). We have

. =-2] a9 -ag/p (29/P)"* In (a—14+k)! )
3.23) I, » np— » 26 x o= Dot

Applying the formula (3.12) with (3.13) again it can be seen that

M><_l ) ( k) —k ~_< 1 __1_>
In (@—Dla* — ¢ 2+k In{1+ + at+k a

B 1
32(a+k)"’(a+k+1)(a+k—|—2)

3R (1) k)
>(a—Lir)1 k _1),
—<“ g Th)In{1+ +768 otk @

Let us put

1 t 61 1 1
=—(g—=+t]1 (1 —> t———(———) 0, t=2),
o) (a 2+>n +a + 768 \a+t a @> )
then

Y(t)=—1In (1+ t) L ayeyry 8L 4 L gy

'v”(t)=—(a+t)‘1——;—(a+t)‘z—%(a+t)‘“<—(a+t)“—%(a+t)‘2<0
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v"’(t)=(a,+t)'2+(a+t)"+§8-(a+t) >@+t)7>0

V"(t)y=—2(a+t)*—3(a+t)t— %(a +1)7°<0.

Thus, by the generalized Jensen inequality,

1+4-k)!
@20 B[-ln G

1 aq) < aq/p) aq 61( 1 1)
s—( _Lli\y(1p2alp) oq 61 1 1
=—(e—gt+=) T o T8 \ataalp @

+om| - P T [+l @Tozmy)

<a q, 6lg  pg
| _—_1 1—q)—
=y Pt n(=q +768a 124
<@ 61q
| _——_1 1—
p np+ n(l—gq)— 768a

Hence, combining (3.23) and (3.24), we obtain

1 61 61 :
Ls-5In(l-g)- q+7sga r +76§a<p2{p %q+7gsa}’

which completes the proof of the theorem.

PROOF OF COROLLARY 3.2. From (3.18) and (3.19)

SQ_ 1.1 _i 611—q)" =4
(8.25) L= pe mm( tgou 1-zat+ q+ 768a > p @ (@)
<4 o) [a _ 4(9—16q+4q2)+«/ 16(9—16q+4¢°)*+122¢(1—q)’* ]
o 16q
_¢1,1
= [4 *ts “"q] I
and thus from (3.17)
(3.26) Vi@, 9)=2 min [7(L¥), C(L*)]Ec*(Q)% :

In Figure 3.2, 2(q/p) '5(L;*) and 2(gq/p)~'¢(L*) are plotted. It can be seen
that ¢*(q9) is a continuous and monotone decreasing function of q. So,

6*((1)<£Iﬂ!l 2a/p) UL =V2 ,

which completes the proof of the inequality (3.20).
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"
4 Iz‘=q [l-f'%llo(l] o

pZ|4
4 o -4
4(9—16¢+4¢?) +/16(9—16¢+4¢?)2+122¢ (1—¢q)?
- ag= .
° 16¢
— 34 -3
=
© ] 2(“)—117(1') I
2 L2
-1
—lo
1

Fig. 3.2. ¢*(q) for V(a, q)gc*(q)%
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