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Summary

A distribution-free upper bound is derived on the Bayes probability
of miseclassification in terms of Matusita’s measure of affinity among
several distributions for the M-hypothesis discrimination problem. It
is shown that the bound is as sharp as possible.

1. Introduction

Let us consider the discrimination problem of classifying an obser-
vation X as coming from one of M possible classes #¢ {1,2,.---, M}.
Let 7,=Pr{6=17}, 7=1,2,---, M denote the prior probabilities of the
classes. Let fi(x),---, fx(x) denote the conditional probability density
functions given the true class or hypothesis. We assume that the fi(x)
and %, 1=1,---, M are completely known. In such a situation it is
well known that the decision rule which minimizes the probability of
error is the Bayes decision rule which chooses the hypothesis with the
largest posterior probability. We denote the resulting probability of
error by

(1) P.=1—{ max {z.f(x)}dz .
Matusita [4] has defined the affinity of fi(x),---, fu(x) as
(2) o= £ @) fi@)- - fulo) s

For the two-hypothesis problem the affinity, also known as the Bhat-
tacharyya coefficient [1], is given by
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(3) P12=S VF@Fi@)ds .

In [6] Matusita applied o, to discriminant analysis techniques. An
axiomatic foundation for p, in the multivariate discrete case was given
by Kaufman and Mathai [2], and some properties of p, were derived
by Toussaint [7].

Matusita [5], [6] also derived a lower bound on P, in terms of py
given by

(4) Pe%%’?l’h' = ulow)™ -

Although he gave no upper bound on P, in terms of p,, he offered the
following upper bound in terms of the pairwise affinities p,;:

M
(5) Peét% Y1y i -

A corresponding lower bound on P, in terms of p,; was later exhibited
by Kirmani [3] who showed that

(6) Pz

(M—l

1 M
i >_ﬁ KZ‘; */(ﬂc+’71)2—47)i’711’3/ .

Kirmani [3] suggested that (6) was sharper than (4) by proving that
this was so when M=2.

The lower bound problem was finally settled by Toussaint [9] who
showed that

(7) ou=K(M, 6)(1— P,)"V¥(P,)*v/x
where
K(M, 0)=(nin,- + +pu) " VH(M—1)4-201% |

and that this bound is as sharp as possible. If, for example, (7) is
loosened by using the relation

(P,)(M—I)/Mé (Pe)l/M

then one obtains

(8) Pezé—%«a—w— D™ S~ mom)™ »

where if M is set equal to two we obtain Kirmani’s result (6).
An upper bound on P, in terms of p, was derived by Toussaint
[8] and is given by:
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(9) P<(2) 1+ 2 i) o

For M=2 (9) reduces to Matusita’s result (5). For the case of equally
likely hypotheses (9) reduces to

M—2\, 1
10 es( ) 1.
(10) P.=< > +2PM

From (10) we can see that this bound is very loose and in fact, for
M=4 it becomes useless.

In this paper we settle the upper bound problem by deriving a
distribution-free upper bound on P, in terms of p, and proving that
the bound is as sharp as possible.

2. Upper bound on P, in terms of p,

THEOREM.

M-2 1
11 pP.< < > + e W
( ) =\1 @ I 1) (771772 7}M) On

PrROOF. Let g,(x)=f(x)y;. Then it is obvious that:
M
(12) (M—1) max {g,(2)} = 3} g(*) —min {g,(2)} .
Rearranging (12) yields

(13)

e 31 g@)—max {g(¢)) S min {g.(@)) -

Now since the fi(x) and 7 are non-negative it is always true that for
any x

. o 1%y
(14) min {go)} =[] 00)|
i i=1
Substituting (14) into (13) we obtain

(15) S 2o —max {g@) s [To@ ]

M T M-1
The left term of (15) can be broken up into

200 - (2=2) 31 ga)

which, after integrating both sides of the inequality and using the fact
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that S fiz)dx=1 yields
16)  1-|max(f@nides(M=2) 1 L (1] f@n) "o

Applying the definitions of P, and py in (1) and (2) to (16) completes
the proof.

We now show that inequality (11) is as sharp as possible by ex-
hibiting distributions for which the equality in (11) is achieved for any
value of M. We need only consider the one-dimensional case. Define

0 for i—1<2<1—149

for =<0
Qa7 fix)=

for a =M
1/(M—3) elsewhere

for 1=1,2,---, M and where 4 is a positive constant such that 0<3<1,
and let p=9,=---=9,=1/M.

Substituting the equal priors and the densities defined in (17) into
equation (2) and integrating yields

M(1—9)

18 === "/,

( ) 127 M—23

Alternately we can write

(19) a:(M_MpM)/(M_pM) .

Substituting equal priors and (17) into (1) and integrating we obtain

M—-5-1

20 P=——_- - |

(20) =3

Substituting (19) for 4 in (20) and performing some algebra yields

M—2 1
£ (2 sy
=1/ e "

thus establishing that the equality in (11) can be achieved.
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