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Summary

This article is concerned with a class of statistical structures which
has been introduced by Basu and Ghosh and where the underlying
family of probability measures is not dominated. Using the concept of
partition-inducible subfields it is shown that the intersection of arbi-
trarily many subfields is sufficient again. This gives rise to the notion
of the coarsest sufficient subfield containing a given family of sets.
This generated subfield may be calculated as a function of the minimal
sufficient subfield which always exists in these structures. Finally some
attention is given to invariance and sufficiency.

1. Introduction

Let X be a set, A a o-field of subsets of X and P a family of
probability measures on . The triplet (X, A, B) will be called a sta-
tistical structure. As is well known the existence of minimal sufficient
subfields of A is assured, if the family P is dominated [1]. We con-
sider here an interesting class of statistical structures where P is not
dominated. This is the class of the so called Basu-Ghosh-structures,
which has been introduced by Basu and Ghosh [3] and has further been
studied by Morimoto [7). In [3] the existence of minimal sufficient
subfields of A was established, if the underlying structure is Basu-
Ghosh, a fact which is widely used in the results to be presented.

A Basu-Ghosh-structure satisfies the following assumptions:

(i) X is not countable.

(ii) A is the power-set of X.

(iii) P consists of discrete probability measures.

(iv) P(A)=0 for all PeP implies A=¢.

The aim of the present paper is to consider these structures and to
derive some new results, which should be of some theoretical interest.

Section 2 deals with partitions of the set X. During this section

151



152 G. TRENKLER

the assumption of a Basu-Ghosh-structure can be dropped. The main
result is that the (possibly more than countable) intersection of parti-
tion-inducible o-fields is again partition-inducible.

Section 3 shows that the intersection of arbitrarily many sufficient
subfields is sufficient again. However it is assumed here as in the
following sections that (X, %, P) has Basu-Ghosh-structure. It should
be pointed out that even in the dominated set-up there is no analogy
for this property.

Section 4 links the notions of invariance and sufficiency. As we
lack the existence of P-zero sets we can overcome some difficulties
which arise in Basu’s paper [2].

2. Partitions

In this section we do not impose any structural restrictions on X.
As before the power set of X will be denoted by 2.

By a partition of X we mean a family of mutually disjoint non-
empty subsets of X which collectively cover X. In a natural way every
partition can be understood as a family of equivalence classes induced
by a statistic on (the sample space) X. The notions: partition of X
and statistic on X can be identified. Henceforth we use the word parti-
tion only. Each system of subsets &2l gives rise to a partition of X
if we define an equivalence relation =g on X.

Let »,y€ X. Then we put xzgy if and only if each set in & either
contains both or neither of  and y. It is easily seen that rg is re-
flexive, symmetrical and transitive. The equivalence classes of r yield
a partition which will be denoted by T(€). (In Morimoto’s article [7]
this equivalence relation was considered only in the case of & being a
o-field.) Let E, be the member of T(&) containing x. E, is the big-
gest set containing x with the property: for all £ ¢ & we have either
E.CE or E,.CE, where E= {z]ze XNz¢ E}. If € is a partition itself
¢ and I(€) coincide with each other.

The partitions of X will be ordered in the following way: Let Z,
T’ be partitions of X. They are written T’ if each set in T is a
union of some members in ¥’.

Every partition £ induces a o-field given by

2.1) B@):={ U TIT*T}.

A o-field € on X will be called partition-inducible if one can find a
partition T of X such that

C=B(Z) .
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Obviously
€,c€, implies I (C)<I(E,)
T,<¥, implies B(T)cB(T,).

Furthermore we have Gc®B(Z(€)), and for every partition we can
state

2.2) T=Z(B(T)) .

A very helpful characterization of partition-inducible o-fields was given
by Morimoto [7]. We present it here as a lemma.

LEMMA 1. Let € be a o-field on X. The following assertions are
equivalent :

(i) € 4s partition-inducible.
(2.3) (ii) € 4s closed under the formation of (possibly more
than countable) unions.
(i) C=B(T(C)).

For further considerations we need the following fundamental lemma
stating that partition-inducibility is preserved against the formation of
arbitrary intersections.

LEMMA 2. Let (€));c; be a family of partition-inducible o-fields on
X. Then the o-field
neg;
iel
18 partition-inducible.
The proof follows directly from Lemma 1 (ii).

The preceding lemma justifies introducing the notion of the coarsest
partition-inducible o-field containing a family & of subsets:
(2.4) d(€):= n € .*»

[t
€ is partition-inducible

As U is induced by the partition {{z}|x € X} and €U it can be seen
that ¢’(€) is well defined. Generally, ¢’(€) contains ¢(€), the smallest
o-field containing €. o/(€) can easily be calculated as the following
theorem indicates.

THEOREM 1. Let € be a family of subsets of X. Then we have

* The I in ¢’(€) is an abbreviation for the word ““induced”. It should not be mixed
up with the subsequent index set I.
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(2.5) o1(€)=B(L(E)) .

PrRooF. Using the fact & cB(Z(F)) we conclude that B(I(E)) is
a partition-inducible o-field containing €. B(I(E)) is moreover the
coarsest partition-inducible o-field containing . Let € be an arbitrari-
ly chosen partition-inducible o-field containing . We see that Z(E)
< Z(€). Hence we derive from Lemma 1:

B(T(C)cC=B(T(©)) .
Thus ¢'(€) and B(T(E)) must be equal.
Especially if € is a o-field it is clear from the above theorem that
(2.6) d'(€)=B(T(C)) .

We proceed now to the question whether we can generate a new parti-
tion from a given family of partitions. We need not assume that the
family is countable.

LEMMA 3. Let (T,).c; be a family of partitions of X, then there
exists a partition denoted by V T, with the following properties:
iel

(i) T,V E, foral jel.
iel
(ii) For every partition T with T,<I for all 1¢1 it Sollows that

VvV TIT.

tel
The proof can be taken from Blackwell-Girshick [4], p. 219.

THEOREM 2. Let (,);c; be a family of partitions of X, then there
exists a partition denoted by A T, with the following properties:
iel

(i) AZ<Z, forall jel
i€l
(ii) For every partition T with L<I, for all i eI it Sollows that
TAE,.

iel
ProOOF. Put
S:={T|T<E, for all 1¢1}.
Obviously & is not empty. Hence we can define

/\ 3:,:= v z-
tel ZTe®

If we choose an arbitrary jeI it follows that T< Z,; for all Te .
Lemma 3 (ii) gives s:v(‘3%<£,, i.e. /\I £,<Z;. This is exactly condi-
€ 1€
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tion (i).
To prove assertion (ii) we choose a partition ¥ such that T<Z,
for all teI. This means ¥ ¢&. Using Lemma 3 (i) we get

TA L,

The proof is complete.

If we wish to show that in the case of Basu-Ghosh-structure the
intersection of sufficient o-fields will give a sufficient o-field again we
need the following theorem. The first part of it is of special interest,
because it constitutes an extension of the statement of Basu-Ghosh [3]
p. 857 (Remark 3).

THEOREM 3. Let us be given a family (T,)..; of partitions of X.
Then we have the following identities :

2.7 (i) %(i/e\l %i)zire]l B(T)).
(2.8) (ii) ?B(i\e/l Ei)za’(igl B(T))) .
ProoF. (i) Since i/E\I T, <Z; for all jeI we have
%(i/e\l T)CB(T;) forall jel.
Hence it follows that
(2.9) BN T)c N B(T,) .
From Lemma 1 and Lemma 2 we conclude that
(2.10) n 23(%0:23(%([21 B(T))) .

Furthermore we have

N B(T,)CB(L)) for all jel
iel

which gives

I(-n: B(T,)<IT(B(T,)=1, for all jel.
Therefore it follows in connection with Theorem 2 (ii) that
(2.11) E(_D} B(L))< é\l <.

Thus
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(2.12) BEE(N BTN CBA T)
or
(2.13) N B(THSB(A T -

Together with (2.9) we finally have the desired identity in (i).
To prove (ii) let T,<Vv T, for all jel It follows that B(T;)c
iel

%(_\/I ;) for all j €I and hence

(2.14) U B(T,)cB(V E,)
so that
(2.15) o'(U B(THCB(V Ty

is valid because B(V Z,) is a partition-inducible o-field. Moreover
tel
B(V T,) is also the smallest partition-inducible o-field containing _UI B(L).

Suppose that € is a partition-inducible o-field satisfying
(2.16) €U B(T) .

Then one can find a partition ¥ such that B(ZX)=C€ giving
B(T)=C>OB(T)) for all jelI
and afterwards
T=LBEN>IT(B(T,)=T; for all jelI.
From the definition of Vv £, it follows that Vv T,< X finally implying

tel iel

B(Y THCB(T)=C .

Thus (ii) is shown.

3. Sufficiency and Basu-Ghosh-structures

We turn now our attention to the notion of sufficiency. Hence-
forth (X, %, ) will always have Basu-Ghosh-structure. We start from
the results of Basu-Ghosh [3] which will not be proved here. We shall
need at first some definitions.

A o-field € on X will be called sufficient for ¥, if for every AcC
X there exists a ©-measurable function f,: X— R such that for all
Ce @ and all Pe P,
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3.1) PANC)=| r.@dP@ .

A partition T is sufficient® for 9 if the induced subfield B(T) is
sufficient for ®. We present now the main facts stemming from the
just mentioned authors concerning sufficiency for the Basu-Ghosh-struc-
ture. We shall do this in the form of a lemma.

LEMMA 4. (i) A partition T of X 1is sufficient for P if and only
if there exists a function g: X— R such that

(3.2) P(x)=g(x)- P(E,)

for all x € X and for all PePB. (E, is the member of T containing x.)
(ii) There exists a sufficient partition M of X such that M<E for all
sufficient partitions T. B(M) 1s the minimal suffictent o-field.

(iii) Every sufficient o-field is partition-inducible.

(iv) For two partitions T,, T,, if T,<T, and if I, is sufficient, then
<, 1s also sufficient.

From Burkholder’s paper [5] one immediately derives that a count-
ably infinite intersection of sufficient o-fields gives a sufficient o-field
again. The next theorem deals with an index set I of arbitrary cardi-
nality. For a similar result see Hasegawa-Perlman [6].

THEOREM 4. Suppose (B,):c; 18 a family of sufficient o-fields for
B. Then N B, is also sufficient for P.
iel

Proor. From Lemma 4 (iii), there exist sufficient partitions %,
such that B,=B(T,) for all 1¢I. Applying Lemma 4 (ii), we get ML
%, for all ¢TI and hence from Theorem 2 M<K _/\I ¥,. Lemma 4 (iv)
implies that A £, is a sufficient partition.

iel
Finally we have from Theorem 3(i):

(8.3) B(A T)=n B(L).
tel tel
Thus N B, is a sufficient o-field for P.
iel

It is now possible to introduce the notion of the sufficient o-field
generated by a family € cA. It is characterized by the formula

(3.4) B (E): = N B .
BoOE
B is sufficient

Observe that B = (¢) is well defined as U is sufficient for P.

* We sometimes omit ‘“for P’'.
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Since B = (E) is a partition-inducible o-field we should have a look
at the explicit form of the partition inducing it. The result of the
investigation is somewhat surprising. We shall see that

(3.5) T(B = (6))=T(C) VIR .

(If €,, ¥, are partitions, T,V I, clearly is understood in the sense of
Lemma 3.)

THEOREM 5. Let € be a family of subsets of X. Then
(3.6) B = (E)=B(AMV Z(E)) .

ProOF. From M<MV IT(E) and Lemma 4 (iii), it follows that
My T(E) is a sufficient partition. Furthermore we have € cB(I(E))
cB(IMV T(F)) which means that BV T(€)) is a sufficient subfield
containing €. Let € be an arbitrary sufficient os-field containing €.
We assert that €OB(MV T(€)). Since € is sufficient it is partition-
inducible i.e. there is a partition £ such that €=%(Z%). From the
condition €€ it follows that Z(€)<I(€) implying MV IT(E)<WMV
ZT(€). Now we have Z(€)=F giving MV I(E)<MVIT. M is the
minimal sufficient partition from which one obtains MV T=L. Finally
we get €O>B(WV IT(E)). Hence we can state: B(WMV I(E)) is the
coarsest sufficient o-field containing . Thus B = () and BV T(E))
must coincide.

By definition B = (€) is always sufficient. We should now raise
the question: Under which conditions is the o-field ¢/(€) sufficient ?
A necessary and sufficient criterion is given by the following theorem.

THEOREM 6. Let € be a family of subsets of X. ¢'(&) s sufficient
if and only if there exists a sufficient partition T such that

T< (E) .

PROOF. To prove necessity we assume that ¢/(€) is sufficient.
Then we have ¢(€)DB(M). Using Theorem 1 one obtains

T(E)=T(B(T(C))=Z(d"(€))>ZT(B(M))=M] .

The reverse direction is shown as follows. Let there exist a suf-
ficient partition such that T E(E). From Lemma 3(iv) it follows
that T (€) is also sufficient. Finally we have from Theorem 1 that
¢ (€)=B(Z(€)). This implies the sufficiency of ¢(E).
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4. Invariance and sufficiency

Although “the invariance principle usually falls to pieces when
faced with a discrete model” (Basu [2], p. 83) we shall give some at-
tention to that field. In this section f is always a one-to-one mapping
from X onto X, ie. f: X—X is a bijective transformation. For
each Pep let f(P) denote the measure on U induced by f and given
by the equation:

(4.1) F(P)(A):=P(f(4)) for ACX.

f is called model-preserving if we have f(P)=P for all Pe®p. In a
natural way every bijective f yields a partition-inducible o-field which
is given by

(4.2) A(f):={A|ACX and fY(A)=A} .

The members of T(A(S)) can be described as sets of the form {f*(x)|
neZ}=E,.

Suppose ¥ is a nonempty class of bijective mappings from X to
X. Then

4.3) AF):= Nn_AS)
fET

is also partition-inducible by Lemma 2.

The following theorem has been proved already by Basu [2]. We
will show here that one can simplify the proof excluding the principles
of ergodic theory if the underlying structure is Basu-Ghosh.

THEOREM 7. Let f be model-preserving. Then A(f) is sufficient
for B.

PROOF. We have to construct a mapping ¢g: X— R such that
(4.4) P(x)=g(x)- P(E;)

for all x € X and all PeP. Let x € X, Pe P be arbitrarily chosen. As
mentioned before E, can be written in the form {f"(x)|n € Z}. The
Basu-Ghosh-structure of (X, %, ) implies the existence of some P,eP
such that Py(x)>0.

As we have

(4.5) Py(f™(x))= Pyx) for all ne Z,

it is clear that there is only a finite number m(x) of different points
in E,. Put
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1
m(@)

(4.6) 9(@):=

Obviously g(x) does not depend on P. (4.5) is also valid for P which
gives immediately

(4.7) P(x)=g(x)- P(E,) .

It follows at once from Theorem 4 that A(®) is sufficient if @ is a
nonempty class of model-preserving transformations. A weaker state-
ment can be read in the paper of Basu [2] p. 65, Theorem 2. Espe-
cially if &* is the class of all model-preserving transformations then
A(G*) is sufficient. But generally B(IM) is coarser than A(G*). Also
in the case of Basu-Ghosh-structure one can easily construct examples
showing that B(M) and A(G*) need not coincide.
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