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SENSITIVITY OF BAYES DECISIONS FOR THE SUCCESS PROBABILITY
FOR SAMPLES FROM A NONBINOMIAL POPULATION
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Summary

A family of generalised negative binomial distributions is employed
to investigate inference robustness of the Bayes estimator of the un-
known parameter of the binomial distribution. A zone of sensitivity
for the test of significance is constructed to forewarn the pro-Jeffreys
Bayesians against indiscriminate choice of the probability in favour of
the null hypothesis. A few selected tables are presented to illustrate
the effect of relaxation of the ‘binomiality’ assumption.

1. Introduction

Inference robustness to non-normality of the Bayesian procedures
has drawn attention of the researchers during the last two decades.
Attempts have also been made to investigate the effect of choice of
the prior distribution and also that of the loss function on the infer-
ence concerning the unknown parameters of the parent distribution.

Jain and Consul [3] introduced a family of generalised negative
binomial distributions (GNBD) by compounding the negative binomial
distribution with another parameter. It was shown that GNBD provides
a better fit to some of the well known historical data than the nega-
tive binomial, Poisson, and the binomial distributions. This study sug-
gests that, like that for normality assumption, the behaviour of the
Bayes decision for the success probability as the binomial parameter
to ‘non-binomiality >’ of the parent population needs investigation.

2. Posterior distribution

Let X, X;,-++, X, be a random sample of size k from some fixed
member of the GNBD (see, Jain and Consul [3]) defined as follows:
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For a€(0,1) and |ef<1

nf(n+ﬁx) __ y\nt+pr—z
AT(m+pa—arD
(1) f(x; a,n)= n>0; £=0,1,2,...

0; for z=m if n+pm<0.

It is easy to verify that the binomial and the negative binomial dis-
tributions belong to this family of distributions for =0 and B=1,
respectively. The parameter 3 takes into account the variations in
mean and variance in such a way that the both are positively ecorre-
lated with the value of 3. Here variance increases or decreases faster
than the mean. In this paper we consider the parameter 8 as a meas-
ure of ‘non-binomiality’.

For a realisation x=(x,, ,,---, 2,) of the random sample for some
fixed values of the parameters » and 8 of GNBD given in (1)

— (1 — y)En+(B—1s k nl'(n+Bx,) — X
(2) file|lx)=a'(1l—a) ;l;l; o Tt fr—2. D) s iz‘,zlxi,

is the likelihood function for the unknown parameter a. Let us assume
that the prior distribution ¢ of the success probability is beta

(3) §(@)=0"""(1—a)"""/B(u, v) ,

with known parameters >0, »>0.
The marginal distribution of X with respect to the beta prior (8) is

B/, v') & nIl'(n+Bx;)
B(u, v) =t x!I'(n+pr,—x,+1) ’

(4) fx)=

and, therefore, the posterior distribution of A with respect to the
prior £ is '

(5) §(a|x)=a""'(1—a)""'/B(', V') ,

a beta with parameters 4'=u+s and v'=v+nk-+(8—1)s. It is interest-
ing to observe that beta distribution serves as a conjugate prior for
the GNBD as well. As expected, for 3=0, the posterior distribution
(5) reduces to the one for binomial parent and as 3—1 it tends to that
for negative binomial case. Further, for s=0, the posterior distribu-
tion is seen to be independent of the ‘non-binomiality’ parameter g.
Thus the Bayes decision for ¢ will be insensitive to any amount of
relaxation of the binomiality assumption when no success occurs in the
observed sample. This will also be true for the negative binomial
parent.
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3. Bayes estimator and risk

Under quadratic loss function, L(d, )=(d—«a)’, the Bayes estimator
for the success probability @ of the GNBD is given by

(6) 3 (x)= S: at(e| X)da=w)(u'+v') .

Clearly, this estimator tends to underestimate the true value of a even
when sample size increases. The non-binomiality also adds to under-
estimation of @. In the binomial situation the number of successes s
varies between 0 and nk and corresponding Bayes estimator depends
on the sample observations only through the observed values of s.
Numerical estimates of this effect for selected values of s and § are
obtained in the Table I. The effect of non-binomiality increases as the
number of successes in the observed sample increases. For example,
as f—1 the posterior mean decreases by 0.005 for s=1, whereas, for
§=20 it decreases by 0.4167. If posterior mode is used as the Bayes
estimator of a, given by (u'—1)/(w'+v'—2), Table I shows that it is

Table I. Bayes estimates for a (mean and mode of posterior distribution)
and posterior variance when u=v=n=2, k=10.

B—
s 0.0 0.1 0.2 0.4 0.7 1.0
Posterior Mean
1 0.1250 0.1245 0.1240 0.1230 0.1215 0.1200
0.1667 0.1653 0.1639 0.1613 0.1575 0.1538
0.2917 0.2857 0.2800 0.2692 0.2545 0.2414
10 0.5000 0.4800 0.4615 0.4286 0.3871 0.3529
15 0.7500 0.6667 0.6296 0.5667 0.4928 0.4359
20 0.9167 0.8462 0.7857 0.6875 0.5789 0.5000
Posterior Mode
1 0.0909 0.0905 0.0900 0.0893 0.0881 0.0870
0.1364 0.1359 0.1339 0.1316 0.1282 0.1250
0.2727 0.2667 0.2609 0.2550 0.2353 0.2222
10 0.5000 0.4783 0.4583 0.4231 0.3793 0.3438
15 0.7727 0.6809 0.6400 0.5714 0.4923 0.4324
20 0.9545 0.8750 0.8077 0.7000 0.5833 0.5000

Posterior Variance

1 0.0044 0.0043 0.0043 0.0042 0.0042 0.0041
2 0.0056 0.0055 0.0054 0.0052 0.0050 0.0048
5 0.0083 0.0080 0.0078 0.0073 0.0067 0.0061
10 0.0100 0.0096 0.0092 0.0084 0.0074 0.0065
15 0.0083 0.0084 0.0083 0.0079 0.0070 0.0062

20 0.0031 0.0048 0.0058 0.0065 0.0063 0.0056
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less affected by the non-binomiality than the posterior mean for small
values of s and more by larger values of s.

It is well known that the extensive form of analysis, under quad-
ratic loss function, yields Bayes risk as the posterior variance. The
Bayes risk associated with the Bayes estimator (6) when sample x has
been realised is

(1) pr@)=| (= 0x(@) (el x)da=uv | +0/+ (w4 .

As in the case of posterior mean, it is also affected by the presence
of non-binomiality in the parent population and the effect increases
with increase in k£ and 8. Table I shows an interesting feature of this
effect. It is seen to decrease for values of s upto 10, whereas, for
§>10 it first increases by a small amount but then decreases steadily
as 8 tends to 1.

4, Test of significance

Consider the problem of testing a null hypothesis H,: e=a, against
the alternative H,: a#a, as a binary decision problem in which deci-
sion d; amounts to acceptance of the hypothesis H; (1=0,1). Let L(a)
denote the loss incurred in taking decision d; when A=a. Further,
let the loss function be quadratic and specified by

Lya)=a(a—ay)*=0 , for @€ (0,1)
(8)

b, for a=qa,,

Ly(a)= {

0, otherwise ,

with constants a>0 and 5>0.

Following Jeffreys [4], we take the prior distribution of the success
probability A as a mixed type, comprising discrete probability mass p
at a=a, and a continuous distribution of total probability (1—p) with

density ¢(a) such that SD §(a)da=1—p, 2={a: @€ (0,1)—{e}}. In the

absence of any knowledge about the ‘true’ prior, assume that £(e) for
a#a, is a beta with parameters >0 and »>0.

The sample data x refines the probability that a=a, and the den-
sity of A over the set £,, in order to produce the mixed type posterior
distribution of A. The Bayes risk in taking decision d, (accepting H,) is

(9) p(d))=E [L(4)| X=x]=a(1—p) S: (a—a)’é(a|x)da
=a(l—p)[p¥(x)+ {0F(x)—a}?] ,
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and that in taking decision d, (accepting H,) is

(10) p(d:)=b Prob. [A=a,| X=x]=bp/[p+(1—p)c] ,
where fi,(x|a) is the likelihood function obtained in (2) and
(11) c=fdx)[fe(x|a))=BW', V') [B(u, v)ai(1l—a)™+ =] .

Now the Bayes decision function (BDF) D(x) for the binary decision
problem takes decision d, if o(d,)<p(d,), otherwise decision d,.

The author (see, Bansal [1], [2]) developed a method to construct
a ‘zone of sensitivity’ (ZS) for investigating the effect of non-normality
on binary decision problem concerning unknown mean of a normal pop-
ulation. The same technique may easily be employed to obtain the ZS
to investigate the effect of non-binomiality on the test of significance
for a.

The risk curve in pp-plane for decision d,, as in the normal theory,
is a line segment with slope

(12) &= —a[p¥(x)+ {0¥(x) —a}’] ,

and right end point (1, 0). For decision d,, the risk curve is a segment
of a rectangular hyperbola lying between the origin (0, 0) and the point
(1,b). These two segments are seen to intersect at

(13) p*=[(2cc;—b—c,)+ v (b+¢)' —4bcey]/2e(c—1) .

The investigator may now modify the BDF in term of the critical value
p* of p to

do ’ lf p<p*
(14) D(x)=
d,, otherwise .

If p¥ denotes the value of p* when the sample is assumed to have
come from the binomial population, write

pi=min (pf, p*) and  p,=max (pf, p*).

The shift in the point of intersection p* due to non-binomiality of the
population may be measured by the length of the interval (p,, »,). This
interval is called the zone of sensitivity due to non-binomiality of the
parent population. (see Fig.)

Jain and Consul [3] have given a maximum likelihood estimator for
B. For a given sample and a chosen prior distribution the decision
maker may use the maximum likelihood estimate of B to obtain the
ZS. He may then choose the probability p in favour of the null hypoth-
esis H, in the complement set R={p: p€ (0, p)U(p: 1)}. This set R
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Fig. Construction of zone of sensitivity.

was called the ‘region of robustness’ by the author (see, Bansal [1]).
In order to illustrate the effect of non-binomiality on the zone of
sensitivity for the test of significance, when u, v, and n are fixed in
advance, we tabulate the ecritical value p* of p for k=5, s=1,-..,10
and selected values of 3. For =0, p* values are seen to be symmet-
ric about the middle value of the range of s, which is s=5. For fixed
B it is seen to decrease as s tends to 4, whereas, for fixed value of s
the p* values tend to increase with increase in the non-binomiality. The
unequal counter-balancing effect disturbs uniformity in the- pattern of
the effect. Table II gives, for f=0.4, k=5, u=v=n=s8=2, the zone

Table II. Point of intersection p* of the two risk curves in
the pp-plane when u=v=n=2, k=5.

B—

s 0.0 0.1 0.2 0.4 0.7 1.0
1 0.3241 0.3327 0.3414 0.3590 0.3856 0.4126
2 0.1075 0.1159 0.1248 0.1443 0.1776 0.2159
3 0.0334 0.0368 0.0413 0.0520 0.0734 0.1027
4 0.0128 0.0142 0.0159 0.0206 0.0321 0.0491
5 0.0086 0.0084* 0.0086 0.0100 0.0151 0.0251
6 0.0128 0.0098 0.0082 0.0069* 0.0085 0.0139
7 0.0334 0.0205 0.0135 0.0075 0.0059* 0.0085
8 0.1075 0.0563 0.0311 0.0118 0.0053 0.0058
9 0.3241 0.1674 0.0826 0.0228 0.0061 0.0044

10 0.6575 0.4126 0.2159 0.0491 0.0085 0.0039
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Table III. Point of intersection p* of the two risk curves in
the pp-plane for s=u=v=n=2.

B—

k 0.0 0.1 0.2 0.4 0.7 1.0
1 0.0659 0.0535 0.0444 0.0321 0.0226 0.0190
2 0.0190 0.0184 0.0182% 0.0185 0.0203 0.0239
3 0.0239 0.0254 0.0272 0.0313 0.0197 0.0492
4 0.0492 0.0533 0.0577 0.0676 0.0855 0.1075
5 0.1075 0.1159 0.1248 0.1442 0.1776 0.2159
6 0.2159 0.2297 0.2440 0.2739 0.3215 0.3717
7 0.3717 0.3888 0.4060 0.4405 0.4921 0.5425
8 0.5425 0.5589 0.5750 0.6064 0.6510 0.6924
9 0.6924 0.7054 0.7181 0.7422 0.7754 0.8051

10 0.8051 0.8143 0.8231 0.8397 0.8620 0.8816

of sensitivity as the interval (0.1075, 0.1443) and the region of robust-
ness R={p; p € (0,0.1075) U (0.1443, 1.0)}.

The decision maker may also like to get an idea of the effect of
non-binomiality for increase in the sample size when the number of
successes s in the observed sample is kept fixed. For k=1, p* is seen
to decrease as B tends to 1. However, for k=4, p* steadily increases
with increase in the value of 8. In particular, for example, for k=10,
p* value for binomial parent (8=0) is 0.8051. This value increases to
0.8851 when the binomiality assumption is violated to the extent that
the actual parent is negative binomial (3=1.0).
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