Ann. Inst. Statist. Math.
34 (1982), Part A, 135-142

SEQUENTIAL PROCEDURES FOR A CLASS OF DISTRIBUTIONS
RELATED TO THE UNIFORM

P. J. COOKE AND M. K. VAGHOLKAR

(Received Nov. 2, 1979; revised Feb. 14, 1981)

Summary

The main purpose of this paper is to examine some sequential in-
ference procedures, mainly in the one-sided hypothesis testing situation,
for the parameter of a class of distributions related to the Uniform
distribution on (0, #). The procedures are all based on the sequence
of maxima of independent and identically distributed random variables
and, for the case of a single (upper) boundary, procedures which are
optimal in the sense of minimizing the average sample size are dis-
cussed. The impossibility of using two boundaries is demonstrated,
thus leaving the best procedure with one boundary as the optimal pro-
cedure. The novelty of this procedure is that it uniformly minimizes
the average sample size.

1. Introduction

Suppose Xj, X;,--- are independent random variables, each with
cumulative distribution function F(x) and density f(x). Let Y,=max
(X, Xpp-++, X)), n=1,2,--- and define a stopping rule N by

(1) N=first integer n=1 for which Y, ¢ (b,, a,) ,

where {a,} and {b,} are sequences of real numbers typically non-
decreasing since {Y,} is stochastically increasing with ». Then, for
n=2

P(N>n)=P b, <Y <ay,-++, b,,<Y,_<a,_y, b,<Y,<a,)
:P (bi<Yi<ai, ’l:: 1, 2’ ey, n___l)
. P (bn<Yn<aﬁn|bt<Yi<ai, ’i:l’ 2, ey, n_l)
=P(N>n—1)P (b,<Y,<,|b,.1<Y,_1<as_y)
since the sequence {Y,} is Markov. Thus induction gives
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P(N>n)=P (N>1) T_L P (b;<Y,<a;|b_ <Yi,<a:,) .

For b,>a,,, Pb.<Y:<a.|b_ <Y, <a;,,)=P (b;<X;<a)=F(a)—
F(b;), though typically b;<a,_, for each i>1. Henceforth we will make
this assumption, in which case

P (bi—l<Y‘—1<ai—l)=Fi_1(ai—1)_Fi_l(bi—l) ,

P (<Y, <a; b1 <Y; 1<a;_,)
= F(@)[F @) — F*(be_)]— PG F*-(b) — F(b,_)]

and, for =2,

Pb:<Y.<a;|b, 1 <Y, 1<a;_,)

Fla)— o[ F ) —Fiib, )
=F@)-F (”J[Fi—l(ai_1>—Fi-l(bi-l)] '

Thus, since P (N>1)=F(a,)—F(b,), for n=2

- FoG)=Fib) 1)
2)  P(N>n)=[F(a)—F(b {Fi—Fbi[A J—Fb) )
(2) (N>n)=[F(a)—F( 1)]1[z (@) —F(by) Fia, ) —F b,
Suppose we consider procedures truncated at some integer M, say,
in which case a,=b,. (This possible violation of our assumption for
the pair ay_,, by does not effect any of our calculations.) We can now
find expressions for any of the moments of N using (2). In particular,

(3) E(N):gP(N>n)

=1+F(a;)—F(b)+[F(a,)— F(b)]

T {Fe)—Fo)| S0 )

Suppose further that F’ depends on a single unknown parameter 6 (and
hence we attach a subscript ¢ to F') and that H, is a hypothesis about
the value of ¢ to be tested using a sequential procedure with stopping
rule of the form (1) and with decision rule

(4) reject H, if Yy=ay , accept H, if Y,=<b, .
For such a procedure, for n>2,

P, (N=n, reject H)=P, b <Yi<ay,---, b1 <Y, 1<a,_y, Y.z2a,)
=P0(b1<n<al""’ bn—1<Y—1<an—l9 Xn;an)
=P, (N>n-1)P,(X,=a,) .

Hence, using (2), the procedure has power function
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(5) B(8)=P, (reject H,)
=é P, (N=mn, reject Hy)
=1—Fi(a)+[F(ar) — Fy(b)][1— Fi(ar)]
+IF @)~ Fib)] 3 [1- Fi@,)]

T reo-rol| gl )

If the decisions to reject and accept H, are reversed in (4), then of
course the power function is one minus the expression in (5). The
expected sample size, which we now denote by E,(N), is given by (3)
with F replaced by F,. Equations (3) and (5) hold with M=o for
untruncated procedures.

Suppose now that the density corresponding to F(x) is f,(x), where
fox)=c(0)g(x) for z € (0, ) and f,(x)=0 otherwise and g(x) is a known
function. This includes the case in which fy(x) is a specified density

g(x) truncated at the unknown point z=¢. If G(cv)zgz g(u)du, then
0

c(0)=1/G(6).

For the class of distributions {f,(x), 6 >0}, Y,=max (X, X;,---, X,)
is sufficient for @ for a fixed sample size procedure with sample size n»
and hence by Fay’s lemma (see, for example, Lehmann [1]), Y, and
N are jointly sufficient for 6 for a sequential procedure based on the
stopping rule N defined in (1). Without loss of generality we will
restrict the discussion henceforth to the Uniform distribution on (0, 6)
since, if X has density f,(x), then the random variable G(X) has the
Uniform density on (0, G(9)).

2. Optimal procedures

We will restrict the discussion to follow to tests of a hypothesis
of the form H,: =<6, against the alternative H,: 6>6, where ¢, is a
specified constant. It is well known (see, for example, Lehmann [2])
that for random samples of fixed size n from the Uniform distribution
on (0, 8), every size a test based on Y, is uniformly most powerful for
testing H, against H,. The procedure which minimizes the power func-
tion uniformly for #<6, is the one with critical region Y,=0,(1—a)"".
This procedure has power function B(8)=1—(1—a)(6,/0)" for 6 =01 —a)""
and B(A)=0 if 6<6,(1—a)'". The sample size required for A(f,)=1-—3
for some specified 6,>6, and g€ (0,1) is

n(a, B)=log < 1;“ )/log (z—:> .
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To avoid some algebraic complications in the discussion to follow we
will ignore the fact that n(a, 8) is not usually an integer.

The question of whether or not we can improve on the best fixed
sample size procedure through a sequential sampling plan now arises.
Thus we seek a sequential test with size @ and power function equal
to 1—8 at 6=6, and with expected sample size not larger than n(a, )
for any 6 and smaller than n(a, 8) for some 4. The first procedure to
come to mind is the Sequential Probability Ratio Test (SPRT) of Hi:
=6, versus H,: =0, with error probabilities (e, 8). However, the
likelihood ratio is constant for x<6, so that the SPRT procedure re-
duces to: reject H, as soon as you observe an X, greater than or equal
to 6, otherwise accept H, after log (1/8)/log (6,/6,) observations. Thus
the SPRT necessarily has size a=0. Its optimality property is pre-
served ; that is, among all tests with size a=0, the expected sample
size is minimized at both §=6, and #=6,. Clearly, the expected sample
size equals 7(0, B) for §<46,, but is smaller than n(0, 8) for 6>6,. Tests
with size zero are of limited interest and what we seek are sequential
tests, with size a>0, which are better than the corresponding fixed
sample size procedure and which are in some sense optimal.

Samuel-Cahn [3] has considered truncated sequential procedures
based on a single sequence {a,} with a,<a,<---<ay=<6,. Thus the
stopping and decision rules are as in (1) and (4), respectively, except
that b,=b,=:.-=by_,=0 and by=ay,. The procedure is therefore to
take no more than M observations and accept H, if and only if the
boundary is not reached. From (3) and (5), expressions for the expected
sample size and power function of such a procedure reduce to the fol-
lowing :

n=1 i=1

EM=1+3 [1 (%), oza,
ﬁ(ﬂ)=1—ﬁ (%) , 0=0, .

It follows that if (9)=a and f(8)=1—8, then [ a=(1—a)d¥, M=

n(a, B)=log ((1—a)/B)/log (6,/6,) and B(6)=1—(1—a)(8,/6)* for 6=6,. Thus
the truncation point equals the number of observations required by
the best fixed sample size procedure and the power functions coincide

for 6=4,.
Samuel-Cahn has proved that the procedure with boundary a,=
(1—a)b,, ay=a;="---=a,=40, is optimal in the sense that E, (N) is min-

imized uniformly for 6=6,. Thus a, takes care of the requirement
that the size is @>0 and after that the procedure is of the same form
as the SPRT. Indeed, when a=0 they are the same. However, despite
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the proven optimality of the above procedure, the heavy emphasis on
X; might make a potential user of the scheme somewhat wary of it.
Thus in Section 3 we consider a broader class of stopping rules. Before
doing so, suppose we attempt to formulate the fixed width confidence
interval problem in terms of a stopping rule of the form used by
Samuel-Cahn for the hypothesis testing problem. We see immediately
that no matter how the a,’s are chosen, P,(N=o0)>0 for some values
of §. Truncation seems the obvious next step, but with no knowledge
of # it is impossible to determine a truncation value. The only case
in which this problem can be solved with a Samuel-Cahn type stopping
rule is when # is known to be smaller than some constant 6, say, in
which case we can determine a truncation value M (depending on 4,
of course). For purposes of illustration, and indeed without loss of
generality, suppose we consider the unit length confidence interval (Y,
Yy+1). We find

(6) P,(YN<0—-1)=<1—%>M, 1=0<a,+1
1 1 kn—la 1 M-k k a
AT bR
4 0#3110 i} i[l;a
ak+1<6éak+1+1, k:1,2,""M_1,

where the sum is to be taken as zero for k=1.

From (6), given that we will not consider any boundary points
larger than 6,—1, we find that P,(Yy<f—1)<a for all 6<6, if and
only if ay=a,=---=ay=0,—1 and M=log aflog (1—(1/6,)), the sample
size required by the best fixed sample size procedure. Also,

0=60,—1
E,(N)=
’ ol—a)—1, B,—1<0<0,.

Thus the above formulation leads to a procedure which is a slim
improvement over the best fixed sample size procedure since all it does
is take care of the obvious defect of that procedure in that if you
observe an X;>6,—1 you might as well stop sampling since you now
have an interval which contains ¢ with probability one.

3. The two boundary approach

The question now is whether or not we can improve on the above
optimal solution, in the sense of reducing the average sample size, by
using a stopping rule of the form (1) and a decision rule of the form
(4) with at least one of b, b,,- - -, by_; nonzero. If we require the power
function to satisfy p(6)=« and B(4,)=1-—pB, the truncation point must
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again be M=n(e, 8) since, if the procedure is truncated at some M and
if the acceptance region for H, is A, then A is a subset of the M-
dimensional cube with sides of length 4, and P, (Yy € A)=Vol (4)/6)=
1—a. Also, for 626, P,(Yyec A)=Vol (A)/6%=(1—a)(8,/6)¥, so that B(6)
=1—(1—a)(8,/6) for §=6,. Hence B(f;)=1—pB implies M=n(a, p).

It is not difficult to see that, as in the fixed sample size problem,
not only do all size a tests have the same power function for §=4,,
but the power function is uniformly minimized by choosing the critical
region as far as possible from the origin. By the theorem which fol-
lows this paragraph, this amounts to choosing a,, a,,---, ay such that
M

1T a;i=(1—a)d, in which case b, by, - -, by_, are all necessarily zero. It
i=1

is not our main concern here to discuss in detail the procedure which
uniformly minimizes g(d) for 6<6,, though we easily find that the pro-
cedure is the one with b=b,=...=b,_,=0 and a,=a,=---=a,=0,(1—
@)™ since the power function for every procedure is zero for #=<a,
and, in view of the theorem and since ¢,<a,<.--=<a,, the largest pos-
sible value of a, is 6,(1—a)"*.

THEOREM. For every sequential test of H,: <0, against H,: 0>6,
based on a stopping rule of the form (1) and a decision rule of the form
(4) and with power function B(6) satisfying both B(6)=a and B(6)=
1-—-3 for some a € (0,1) and g€ (0,1),

(i) [a=—a)ps
i=1
(i) T ai=(1—a)0¥ if and only if by=by=---=by_ 0.
i=1
PROOF. {X1<a1, X2<a2, MY Xy<ay}@{1fl<aly I,2<‘12! M) Yﬂ<aﬂ}
M
=>{accept H}. Thus P,(X,<a;, X;<a,,---, Xu<ax)=]:l; <%> =1-p5(9)

and (i) follows by putting 6=4,.
From (5) with Fy(x)=x/6 we have

B(0)=1— a1+(al b)(6— a2)+(a10b1) 5 0—a,) 7 {ai [bii"— i ]}

6 n=3 "7t =3 oi—bith

and, if we define a,=1, b,=0 and b}=0 and arrange the terms in in-
creasing powers of 1/ we have

(1) pO)=1-25 b [M‘_:]'ﬁ{ai_bi[bs_—‘—bz‘:}]}

n=t 0 Lan~i—b1d =1 a;si—bicd
bi ' —bii ]}
0” z.ﬂx { [aﬁ:}—bi:i )

It is now easy to see that if b,=b,=-.--=b,_,=0, then ﬁa;(l—a)ﬂ{,’
=1
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since B(6,)=a.

On the other hand, suppose at least one of b,,b,,- - -, by_; is strictly
positive. Then, for §=4,, the power function of the procedure is smaller
than the power function of a procedure with the same upper boundary,
but with each point in the lower boundary equal to zero. That is,
from (7)

BO)<1—L TTa,  for 620,.
0¥ =1

Thus, if ]’i{[aiz(l——a)ﬂg’, then p(6))<a. This contradicts the assumption
that p(6))=a and hence, from (i), ﬁai<(1—a)0§. The proof is now

complete.

We can now prove that it is not possible to have a nonzero lower
boundary for the problem considered here. If we let

anbn[—bz-l—_——bgi—:l N 'n:l’ 2’. ey M_l ’

n—1 n—1
[ 2.y "b‘n—l

d,=b, and dnzcnﬁ(ai—ci), n=2,3,.-.-, M—1, using (7) we can write
i=1

M/ a. ¥ M- M1 e
(8) s0)=1—11 (%)[{Tar' S d.o+ ] (1-2)].

i=1 1/ i=1 n=1 i=1 a,
If ﬁaF(l—-a)ﬁé", the theorem implies that b,=b,=---=b,_,=0. Also

M M
from the theorem, if T[ a;#(1—a)0Y, then T[ a,<(1—a)f¥ in which case
i=1 i=1

M (2 00 )"
Tl ai=2(1—a)6¥ for some 1¢(0,1). But then T <7i>=2(1~a)<_070_> B
I =1\ 6, 1

A8 since M———log(l;a > /log <%—) Thus, from (9), since B(6,)=a and
0

B(6,)=1—8, we must have

1 M M-1 M-1 ¢ M M-1 M-1 e
T S do+ ] (1-2) =1l ot 5 dor+ T (1-2)
A i=1 n=1 i=1 a; i=1 n=1 i=1 a;

M- M-1
or Zl d., 00 "=3 d,0¥ " But 6, and 6, are distinct and d,>0 for each
n=1 n=1

n, where 1=n<M-—1 and hence d,=0 for n=1, 2,---, M—1 which im-
plies that b,=b,=...=b,_=0.

It follows that we cannot improve on the optimal single boundary
procedure; that is, stating the result for the class of distributions with
densities f(x)=c()g(x), 0<x <6, the stopping rule of the form (1) which
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uniformly minimizes the average sample size for §>6, is the one for
which a1=F',;1(1—a), AQ=QAg= =+ =avM=00 and b1=b2= se =by_1=0-
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