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LOCAL ASYMPTOTIC ADMISSIBILITY OF A GENERALIZATION
OF AKAIKE'S MODEL SELECTION RULE*
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Summary

A model selection rule of the form minimize [—2log (maximized
likelihood)+ complexity] is considered, which is equivalent to Akaike’s
minimum AIC rule if the complexity of a model is defined to be twice
the number of independently adjusted parameters of the model. Under
reasonable assumptions, when applied to a locally asymptotically nor-
mal sequence of experiments, the model selection rule is shown to be
locally asymptotically admissible with respect to a loss function of the
form [inaccuracy+complexity], where the inaccuracy is defined as twice
the Kullback-Leibler measure of the discrepancy between the true
model and the fitted version of the selected model.

1. Introduction

Let 6, be an open subset of R? where 1<d<oco. Consider a se-
quence {(2,; P, 0 € 6,)} of experiments in which each P,, is absolute-
ly continuous with respect to a reference measure p, on £2,, and let
P(0)=p.(:; 0) denote the density of P,, with respect to p,. Let K be
a finite set of integers such that 0 ¢ X and let 8,, ke K\{0}, be dis-

tinct proper submanifolds of 6,. Let 4,, be, say, the maximum likeli-
hood estimator of # restricted to 6, and based on the nth experiment.

A model selection rule IAc,,, based on the mnth experiment, is a K-

valued random variable on £,. Let k, be that rule which chooses k ¢
K to minimize

—210g pu(0,)+Cs ,
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any tie breaking rule being allowed. Here the numbers C,, k € X, are
real-valued constants; e.g. C,=cdim @, for some ¢>0. In particular

if C,=2dim @,, k¢ K, then k, is the minimum AIC rule introduced by
Akaike [1], [2], which has been the subject of much recent literature
by Akaike and others.

For 6,7 €@,, let

10, 7)=2E,,; log (p.(6)/pu(7))

denote twice the Kullback-Leibler measure of the discrepancy between
the true probability measure P,, and the alternative measure P,..
Then 1,(0, r)=0, with equality holding if and only if P,,=P,.. The
purpose of this paper is to prove (in particular) that under reasonable
assumptions, {k,} is locally asymptotically admissible with respect to
the loss

Ln(os k)=l,,(0, 5nk)+ck .

The first term, 1,(6, 6,.), of this loss is a measure of the inaccuracy
of the fitted version of the selected model. It is asymptotically equiva-
lent to a quadratic loss function (see Section 3). The second term, C,,
can take into account a variety of attributes of the selected model.
One such attribute is the cost of measuring the variables required to
implement the model—say, a multiple linear regression model. Meas-
urement cost, which was emphasized by Lindley [15], is especially rel-
evant in certain applications; e.g., in medical diagnostics, for a given
accuracy, tomography is preferable to exploratory surgery. A second
attribute is the complexity of the selected model. The general principle
that for a given level of accuracy a simpler or more parsimonious
model is preferable to a more complex one is known as Occam’s Razor.
The extent to which model complexity should be incorporated into the
loss function depends on the enlightened preferences of the decision
maker (see von Neumann and Morgenstern [23]). In this connection
Blalock states on page 8 of [5] that

The dilemma of the scientist is to select models that are at
the same time simple enough to permit him to think with the aid
of the model but also sufficiently realistic that the simplifications
required do not lead to predictions which are highly inaccurate.
The more complex the model, the more difficult it becomes to de-
cide exactly which modification to make and which new variables
to introduce. Put simply, the basic dilemma faced in all seciences
is that of how much to over-simplify reality.

Tukey [22], Anderson [3], Kiefer [12], Demster [8], Box [6] and Faden
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and Rausser [9] express similar preferences. On the other hand Bunge
[7] argues against giving much weight to the desire for simplicity in
the pursuit of scientific truth. No particular form or interpretation
of the numbers C,, k € K, is required for the theoretical results which

follow. The additive form, 1.(6, 0,.)+C., for combining the two types
of losses is simple and reasonable; for an extensive discussion of this
issue see Chapter 3 of Keeney and Raiffa [11].

The local asymptotic admissibility result is described in Section 3
and proven in Section 4. The description and proof both depend on
a corresponding admissibility result for a normal limit experiment,
which will be summarized in convenient form in Section 2.

Although inclusion of the C,’s in the loss function has been shown
to be practically justifiable, it is by no means traditional. For the
usual quadratic loss function (i.e., with all the C,’s set equal to zero),
Theorems 1 and 2 below reduce to the rather uninteresting result that
the rule which selects the largest model is admissible or locally asymp-
totically admissible among all model selection rules. Recently Shibata
[17] and Taniguchi [21] derived a much more interesting asymptotic
optimality property of the minimum AIC rule corresponding to the
usual quadratic loss function, which this rule was designed to handle.
But the optimality was obtained in specialized settings involving in-
finite mested sequences of models. It is unlikely that a similar opti-
mality result could be obtained for general nonmested collections of
models.

2. Admissible model selection rules for a normal experiment

Consider an experiment (2; P,, v€ R%) on which there is defined
a d-dimensional sufficient statistic 7" having the following properties:
Under P,, T has a multivariate normal distribution with mean 0 and
nonsingular covariance matrix denoted by 47 (in short L(T)=N(0, 47).
For v € R?, P, is absolutely continuous with respect to P, and has den-
sity p(v)=p(-; v)=¢(T; v), where

. oy EXD [—(t—v)- J(t—0)/2] _ RPCLY. AW
90 )= e (—t-J172) —exp (t-go— )

here “.” denotes the usual Euclidean inner product on R%. As a con-
sequence, L, (T)=N(v, §7) for ve R%. 1t is also supposed that there
is a random variable U on 2 which under P, is independent of T and
uniformly distributed on [0, 1].

Let H denote a positive definite symmetric d Xxd matrix. Consider
the inner product norm || || on R¢ defined by ||v|*=v-Hv. If H=4
and v, w € R%, then
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”’v—‘WII2=2 Eu IOg (p(’v)/p(w)) ’

which is twice the Kullback-Leibler measure of the discrepancy be-
tween P, and P,.

Let K, be a finite set of integers such that 0e X, Let V,, ke
H\{0}, be distinct proper subspaces of V,=R?’ For ke K, let v(-)
denote the orthogonal projection of V, onto V, relative to the norm
|| ]l. Then wvy(-) is the identity transformation on V, and v(T)=T is
the maximum likelihood estimator of ». For ke K, the function v.(:)
is linear and if H=Y4, then v,(T) is the maximum likelihood estimator
of v restricted to V,.

A model selection rule % for this experiment is a J(,-valued ran-
dom variable on 2. Two such model selection rules k& and k* are said
to be equivalent (i(?Ek*) if Po(l}=k*)=1, in which case P,,(IAc:k*)zl for
veV, Let C, ke KX, denote real-valued constants. Consider the loss
function

L, k)=||v(T)—|*+C;, veV,and ke K.
Define the risk function for a model selection rule k& by
R, k)=E,L(w, k), weV,.

Observe that this risk function is everywhere finite and that if k=k*,
then R(-, k):R(-, k*). A model selection rule k* is called admissible
if there is no model selection rule k such that R(-, k)<R(-, k*) and
R(v, ic)<R(v, k*) for some ve V,.
Let k=k(T) be the model selection rule which chooses ke X, to
minimize
L(T, B)=lv(T)—T|"+Cs ;

ties, which occur with probability zero, ecan be broken, say, by mini-
mizing k. Then k(-) is continuous almost everywhere with respect to

L,(T) for each ve V,. If H=4, the model selection rule % chooses k
€ K, to minimize —2 log p(v(T))+C..
The following result, which implies in particular that % is admis-

stble, is contained in Theorem 1’ of Stone [19]. (For a stronger result
when d<2, see Theorem 1 of Stone [20].)

THEOREM 1. Let k be any model selection rule. Then R(-, b=

R(-, k) if and only if k=Fk, in whick case R(-, k)=R(-, k).
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3. Locally asymptotically admissible model selection rules

Consider again the original sequence {(2,; P,.,, 6 € 8,)} of experi-
ments. Let 6,€6, be fixed and let the reference measure p, be de-
fined to be P,, (so that p,(6,)=1). Random variables Y, and Z, (pos-
sibly multidimensional) on £, for n>1 are said to be locally asymp-
totically equivalent (Y,=Z,) if Lo (| Ya—2Z,))— L(0) (in the sense of
weak convergence); Y, is said to be locally asymptotically infinite (Y,
=o00) if

lim P,,(Y,2M)=1 for all M<oo.

It is supposed that there are R‘valued random variables 7, on 2,
for »=1 such that

(1) Lo (Th) — L(T)
and
(2) P00 +0,0)=9(To;v), veV,,

where {b,} is a fixed sequence of positive constants. It follows from
(1) and (2), which together correspond to the local asymptotic nor-
mality condition of Hajek [10], that if Y,=Z,, then Lo, Ya—2Z,))
— L(0) for all ve V, (see Lemma 2 below).

Let 0, ke K, be 6,-valued estimators of  based on the nmth ex-
periment (i.e., 8;-valued random variables on 2,). Let X, now be de-
fined in terms of 6, by K,={ke K:0,€6,}. It is supposed that

(3) b;l(ank—ao)évk(Tn) ’ ke X,.

Let 10, r)=l w,; 0, 1), w,€£2, and 0,7€6, be a jointly measurable
function of w,, 6 and r. It is supposed that

(4 ) Tn(b—nm Enk)éb;zué_nk'—ﬁ_nouz ’ k € JCO ’
and
( 5 ) Z-11(0—1&)1 E.nk)éoo 1) k € (.7{\(_}(0 .

Let C,, k€ K, denote real-valued constants and set
L0, k)=1,0, 6,,)+C., 0¢8,and ke K.

Let %, be the model selection rule based on the nth experiment which
chooses k € A to minimize

En(gno’ k) =Zn(0—n0’ Enk) +Ck ’
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any tie-breaking rule being allowed. In particular if

1,(0, 7)=2log (.(0)/pu(r)), 0,7 €6,,

then %, chooses k € X to minimize

2108 (Dal020)/Pal0.4)) +C

or equivalently to minimize

—210g Po(0,4)+C ;

so that the definition of %, is equivalent to that given in Section 1.
Let 1,(8,7), 6,7€6, be a function which is measurable in z. It is
supposed that for each ve V,,

(6) L(00+bob, 0,0 =070, —0—b0|2, ke Ko,
and

(7) L(O+bw, bu) =00, ke K\K,.
Set

L0, k)=1.6, 6,.)+C. , €O, and ke K.

To obtain examples where (1)-(7) hold, let the nth experiment
consist of the first »n trials in an i.i.d. sequence, let 4=4(8,) be the
Fisher information matrix for a single trial evaluated at 6, and as-
sumed to be nonsingular, and set b,=n"'% for n=1. Suppose that, for
ke K, V. is the tangent space to @, at 6, and that, for ke K\ K, 6,
is not in the closure of ©,. Then under mild regularity conditions (see

Rao [16]) (1)-(7) hold where 6,., I, and I, are defined as follows: 6,
€0, is a consistent maximum likelihood estimator of 64,; for k ¢ K \{0},

6, is chosen in O, to minimize ||6,.—6.|*; and
10, D)=L(0, 0)=b|c—0|*, 0,7€6,.
Here k, chooses k € K to minimize
Lo(Bray ) =010 — Ono[*+Cs -

Suppose additionally that H=4. Then under mild regularity conditions
as in [16], (1)-(7) hold where 6,, I, and I, are defined as follows:

for ke X, 6,, is a maximum likelihood estimator of 4, restricted to @,
—which is consistent if ke K, ;

1,(0, 1)=21og (P.(0)/pu(z)) , 0,7 €6,

(so %, is determined as in the previous paragraph); and



LOCAL ASYMPTOTIC ADMISSIBILITY 129

L0, 1)=2 E, , log (p.(6)/px(7)) .

Two sequences {IAc,,} and {k}} of model selection rules (the nth rule
being based on the nmth experiment) are asymptotically equivalent if
and only if lim P,,,,o(l?:,,zk:f)=1. It follows from (1) and (2) (see Lem-
ma 1 below) that if k,=k*, then

Hm Py oo oba=kH)=1, veV,.
The local asymptotic risk function R.(v, {l;:,,}), ve 'V, is defined by
Rw(v’ {I}:n} ):lim l—i_rﬁ En,00+bnv min [Ln(00+bnv9 icn)v (!] y

where lim means lim. It follows from Lemma 3 below that if (1)-

a a—co

(6) hold and k,=Fk,, then Iim can be replaced by lim in the formula
defining R.(v, {k.}).

PROPOSITION 1. Suppose (1)-(6) hold. Then k,=%(T,) and R.(-,
{k.})=R(-, k).

The sequence {k}} of model selection rules is said to be locally
asymptotically admissible if there is no other sequence {IAc,,} such that

R+, t)SR.(+, {k}) and R.(v, {k,})<R.(v, {k}}) for some ve V,. The
main result of this paper, which follows, implies that 4f (1)-(7) hold,

then {E,,} 18 locally asymptotically admaissible. (For a stronger result
when d<2 see Theorem 2 of Stone [20].)

THEOREM 2. Suppose (1)—-(7) hold and let {I:c,,} be any sequence of
model selection rule. Then R.(-, {k.})<R.(-,{k}) if and only if k=
k,, in which case R.(-, {k.})=R.(-, {k.}).

The proofs of Proposition 1 and Theorem 2 are given in Section 4,
the proof of Theorem 2 depending crucially on Theorem 1. The state-
ment and method of proof of Theorem 2 is clearly influenced by the
work of Hajek [10] and LeCam [13], [14]. But they do not fit directly

into LeCam’s general treatment since the loss L,(8, k)=1.(8, 6,.)+C:
depends through 6, ON , € 2,.

4. Proofs
Proposition 1 and Theorem 2 will now be verified.

LEMMA 1. Suppose (2) holds. If L,,(T. Y,)— L(T,Y), then
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Loggo(Twr Yo) > LAT,Y),  ve V.
PRrROOF. Since g(¢; v) is continuous in ¢,
LTy Yoy 9(T; v)) = LT, Y, 9(T; v)) .
Thus by (2)
LaoTay Yo, Do00+0,0)) = LT, Y, 9(T; v)) .

Let ¢(t, y) be a bounded continuous function of ¢ and y. Since the
random variables p,(6+b,v), n=1, are uniformly integrable for each
v € V, (see Theorem 5.4 of Billingsley [4])

En,00+bnv ‘xb( Tm Yn) = En,ﬂo ‘nb( Tm Yn)pn(.00+bnv)
— E, (T, Y)9(T; v)=E, (T, Y),

so the desired conclusion holds.
LEMMA 2. Suppose (1)-(5) hold. Then k,=k(T.) and
LragrooTor ) = LT, K(T));  wveV,.

Proor. Let kf be a model selection rule based on the nth ex-
periment which chooses k € K, minimize L.(6,, k) and is such that k*
=k, whenever k,€ K,. Then k¥=Zk, by (1) and (3)-(5). Thus to
verify the first conclusion it suffices to show that k*=k(7T,). But this

follows from (1), (3), (4), the continuity of v,(-) for ke K, and the
fact that almost surely with respect to .L((T) there is a unique %k ¢ X,

which minimizes L(T, k). Therefore k,=k(T,). Since k(-) is continuous
almost surely with respect to _L(T), it follows from (1) that

Lo Tos k(T,)) — L(T, K(T)) .
Thus by Lemma 1
Laagio,o Tur B(T)) = Lo(T, &(T)) .

The second conclusion of the lemma now follows from the first con-
clusion.

LEMMA 3. Suppose (1)-(6) hold. If k,=k,, then for ve V, and
a=0

lim E, s 45 , min [L,(6,4b,, k), a]=E, min [L(», &(T)), a] .
Proor. Let ve V, be fixed. By (8) and (6)
L, (60+b,v, k)=||v(T,)—v|*+C, , keXK,.
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Thus by Lemma 2,
Lo0o+b,9, k)= 1ver, (To) = vl*+Crer,p -

Consequently by (1), the continuity properties of v.(-) and k(-), and
Lemma 1,

lim By pg40,0 min [Lu(0o+b0, k), o]
=E, min [[|vzr(T)—|*+ Cicr», €]=E, min [L(v, k(T)), e]
as desired.
Proposition 1 is an immediate consequence of Lemmas 2 and 3.

LEMMA 4. Suppose (1)-(7) hold. If R.(-, {k})SE(-, k(T)), then
Lo T Fen) — LAT, K(T)).

PROOF. Since R.(0, {IE,,})gR(O, k(T))< o0, it follows from (7) that
lim P,,,,o(lAc,, € K,)=1. Let {n,} be a strictly increasing sequence of posi-

tive integers such that [, , (T, I},‘j) converges weakly to some prob-
ability distribution G on R?X .X,. Then there is a K,-valued random

variable k on 2 such that (T, I::):G. (Here the uniformly distributed
random variable U described in Section 2 is used.) By Lemma 1

Lauagrog(Top b)) > LAT, B), e V.
It follows as in the proof of Lemma 3 that
. By 45,0 1000 [ Ly, (G0 by, k,,), a]=E min [L(v, k), o]

for ve V, and =0 and hence that

R(-, (T)ZR(-, (k) ZR(-, k) .
Thus ]:IE];(T) by Theorem 1 and hence

Loyof Ty o)) > LT, K(T)) .

Consequently £, ,(Ts, k.) — LT, &(T)) as desired.

LEMMA 5. Let ¢ be a function on R® which is continuous almost
surely with respect to L(T). If Ly o(Tn Ya) — LT, AT)), then Y,=
AT

PrOOF. Choose £>0. Set
| A={(t, y): |ly—9¢(t)|=¢}.
Then Py(T, ¢(T)) € 0A)=0, so
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0=P((T, ¢(T)) € A)
=lim P, (T, Y,) € A)

=lim P, (Y, —(T)|Z¢)

as desired. (The continuity assumption on ¢ can be dropped; but a
less elementary argument based, e.g., on Section 3.1.1 of Skorohod
[18] is then required.)

Theorem 2 is an immediate consequence of Proposition 1 and

Lemmas 3-5.
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