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Summary

An estimator of the set of parameters of an autoregressive moving
average model is obtained by applying the method of least squares to
the log smoothed periodogram. It is shown to be asymptotically effi-
cient and normally distributed under the normality and the circular
condition of the generating process. A computational procedure is
constructed by the Newton-Raphson method. Several computer simula-
tion results are given to demonstrate the usefulness of the present
procedure.

1. Introduction

In the field of time series analysis, an autoregressive moving aver-
age (ARMA) model plays an important role as a parametric model. If
a stochastic process {y,} satisfies the equation

(1‘1) yt+blyt—1+ e +bpy[—p:ut+a1u¢_l+ L] —I—aqu,_q

for all integer ¢, this process is called an ARMA (p, q) model, where
{u,} is a white noise sequence and b,, ---, b,, ay, - - -, @, are parameters.
We assume here that the sequence {u,} consists of independent N(0, ¢?)
variables.

Several parameter estimation procedures have been introduced by
Durbin [6], Walker [12], Hannan [7], Clevenson [4] and Anderson [1].
Some of these procedures used the periodogram I(1),

_ 1 N-1 . 2
1.2) I(Z)_w z%}) Y, exp (t4t)

where v, - -+, Yy_, are observations. The logarithm of the periodogram
or that of the smoothed periodogram was used for estimating some
parameters by Davis and Jones [5], Bloomfield [2] and Hannan and
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Nicholls [8]. Wahba [11] also used the log periodogram to obtain an
estimate of the log spectral density by a spline approach.

In this article, we present a procedure of estimating parameters
of an ARMA model by an application of the principle of least squares
to the log spectral density using the log smoothed periodogram. In
Section 2, we propose an estimation method under the normality of
the sequence {u,} and the circular condition. We note that these re-
strictions are imposed merely for the simplicity of theoretical treat-
ment. Then, in Section 3, the estimator is shown to be asymptotically
as efficient as the maximum likelihood estimator. In Section 4, we
provide an iterative procedure based on the Newton-Raphson method
as our method needs to minimize a nonlinear function, and one way
of obtaining initial estimates is suggested. In Section 5, some com-
puter simulation results are shown to ascertain the asymptotic theory
and to make comparison with Anderson’s procedure. Comparing with
that, our procedure has almost the same efficiency and reduces the
computational cost.

2. Notation and method

Let us define two polynomials

2.1) B(elb)=31bg’!, by=1, b,%0,
j=0

2.2) A(z]a):é a?, =1, a,#0.
7=0

We assume that the roots of B(z|b)=0 and A(z|a)=0 are greater than
one in absolute values and the two equations have no roots in common.
Then the spectral density of {y.} is given by

o | Afexp (iD)]a) |

23) F@I9)=5- Blexp (i2)[b) |

where ¢=[¥,a’,d*]’, b=[b;, -+, b,), a=[ay --+,a,]’. For further dis-
cussions we introduce so called the circular condition

(24) Y-x=Yv-xr U_p=Uny_p , (k:l, e, Dy k,':]-’ tt Q) ’

which is rather artificial but is known to have little effects on the

asymptotic inferences. Suppose {y,; t=0, ---, N—1} are available. Then
the likelihood function is given by

N-1
(2.5) P(Yo, * + 5 Yn-a|@)=(2m) ™V ,]l(Zﬂfk(st))'”Z

xexp {(—1/2) S @/A@)]
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where f.(¢) and z, denote the values of f(2|¢) and I(2) at 2=2zk/N,
respectively (see Anderson [1]). This implies that z, is independently
distributed for k=1, ..., [(N—1)/2], each as I'(, fi(¢)), where I'(a, B)
denotes the gamma distribution whose probability density function is
given by {I'(e)}'f~z"" exp (—x/p).

Single z, is an unbiased estimator of fi(¢), but it is not consistent.
So an estimator based on My (=2my—+1) averages of z,, i.e.,

1 my

2.6 —__= ,
(2.6) Ty M, j=§nlvzk+j

has been introduced, where we define that {M,} is a sequence of in-
tegers such that My — oo and MY /N— 0 as N— . We often observe
that the logarithm of an estimated spectral density is a fairly well-
behaved function. Hence we utilize a statistic log z, for the parameter
estimation. Applying the results of Davis and Jones [5], it is not dif-
ficult to show that

@.7) E [log 2] =10g /,(¢)+ ¢(M,)—log My+0( 2},
2.8) V [log ] =¢’(MN)+O<<—%£>2>

and

.8y V WL log 2,]=1+0(~ 1) +0( ),

where ¢(x) is the digamma function defined by ¢(x)=d log I'(x)/dx.
Since x, and x, are dependent if |k—Fk'|<My, we have only Ky—1
mutually independent z,’s where Ky=[N/2My], for example, % ==Cu
(k=1, ---, Ky—1). Applying the method of least squares to log w,
we estimate the true parameter ¢, by ¢ which minimizes

Ky—-1

2.9) L= X {log 1 —log fr(¢) — ¢(My)+log My}

= 33 [108 #0108 fup9 (M) log My +log [T

with respect to ¢, where f;(¢) is defined similarly to 2.

3. Asymptotic theory

In this section we examine the asymptotic properties of the esti-
mator ¢ defined above. Noting the results of previous section, and
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applying the law of large numbers, we can show that _K%—L(qs) con-
N

verges to — 1 S [ g{ NACL)) }]Zd/l in probability as N—oo. This implies
0 f(4l¢)

that ¢ is a consistent estimator of ¢,.
Next we see that the estimator is asymptotically normally dis-

tributed. From the definition of 9;, we have
0

3.1 —L ‘ =0

(3.1) Lo

The Taylor expansion of the left-hand side of (3.1) about ¢=¢, is
et

and ¢- Then we obtain

L(¢*)(¢ ¢,) where ¢* is on the line segment joining ¢

62 YNG-p= [ [~ L] e %Lm) .

By (2.8) and the central limit theorem, we can show that \/ s/K
N
0

X—B;S_L(%) converges to (p+q-+1)-dimensional normal random variable
with zero mean and the variance matrix 161(¢,) where I(¢) denotes the
Fisher Information defined by

(3.3) I(¢)=-1—S g 108 FUI9)57; Tog I di

1
The term x5 6¢ a¢
law of large numbers and the consistency of ¢. Then vN (¢—¢o) con-
verges to (p+¢q-+1)-dimensional normal random variable with zero mean
and the variance matrix I(¢,)™! as N— oco. Thus we have proved the

following theorem.

~L(¢*) converges to 4I(¢)) in probability by the

THEOREM. Let y,, -+-, Yx_1 be generated by the ARMA (p,q) model
with the circular condition (2.4) and the mormality of {w}. If the

sequence {My} satisfies My — oo, M¥*N—0 as N— oo and ¢ is deter-
mined by minimizing the function L(¢) defined by (2.9), then

i) gZ 18 consistent,

i) VN (¢—po) — N0, Igy)™") in law.

That is, ¢ is asymptotically efficient.
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4. lterative procedure

To obtain an estimate of ¢, from the observations, we must mini-
mize L(¢) which is a complicated nonlinear function of ¢. We use the
iterative procedure based on the Newton-Raphson method. In our

procedure, the (i7+1)th estimate qim is given by the equations

(D) é.-+x=é¢+[“’ (@9 ﬂwi)Hﬂwi)] |

206y 00)] L)
o Ao
4.2) o, =2 exp [—K— kZl {log fvm—logl 5
N k= » 4T 7
B<exp (z N MNk> bi>

+log My—g(M} |,

with 8=[b, a']’, where the rth components of the vectors on the right-
hand side of (4.1) are given by

Ky—1

4.3)  [B@)l=— 2 [{log Ty —10g fa(¢) +log My—¢(My)}

(53 con (S5 k=) || (oo (555205 )| |

(44 [a@)]= 3 | log 2u—10g fu(#)+log My— (M)}

_x {jzi% a; cos (—%MNk(fr'—j))}/ A(exp (i—zjg—MNk> la)

]
and the (7, s)th components of matrices are given by

(4.5) [111'(0)],,:11”251 l[{cos (%’EMNk(r—s)) } / l B(exp Q% MNk> lb)

2:| ’
4.6)  [20)].= —2%: lH jﬁo b, cos <%’1MNk(r—j)>}
X {jﬁi_“,, a; cos (%MNk(s—j))}

{2305 o2 38

1
1

The terms 8 and a are the first order derivatives of L(¢), and ¥, 2

“.7) [@(a)],,{f\;: IHcos (%M,Jo(r——s))} / | A(exp <i%’;—MNk> |a)
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and @ are the second order derivatives, while # and @ are slightly
modified in the same way as the scoring method (see Anderson [1]).
When K, is large enough, we can substitute My/N by 1/2K, and the
summation from k=1 to Ky—1 by the summation from k=0 to K,—1.
The effect of these modifications is negligibly small. If we use this
modified version, calculation amount can be reduced by applying the
FFT algorithm, for example, given by Singleton [10]. Note that this
procedure has the same form as Anderson’s or the scoring procedure,
in which, however, all the components corresponding to (4.3)-(4.7)
need summations of N terms instead of our K.

As this procedure is iterative, we must have an initial estimate
at the first stage. Here we consider the following two important
equations for the ARMA (p, q) model (1.1):

4.8) S bo(s—5)=0, s=q+1,
i=0

(4.9) S ae(s—i)=0, szp+l,
j=o

where

o(r)=\"_f(lg) exp (iir)dz
and

(r)= S f(l B exp (tAr)dA .

Then the statistics

and

are eligible for consistent estimates of o(r) and <(r) respectively. If
we substitute these estimates for {o(r)} and {z(r)} of equations (4.8)
and (4.9), the solutions of these linear equations can be used as initial
consistent estimates.

5. Simulation results

We carried out some computer simulations to investigate the be-
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haviour of the estimate outlined above. Observations were generated
from the ARMA (1, 1) model

(5.1) Y0y =uta,_

with b,=—0.8 and @,=0.5, where {u,} consists of independent N(0, 1)
variables. We made one hundred independent sets of sequences for
the length of 90, 180 and 360. To each of these sets we applied the
estimation procedures for My=3, 5 and 9. At the same time, Ander-
son’s and the scoring procedures were applied for comparison. For all
the procedures, initial estimates were obtained by the procedure stated
in Section 4 and the results were given after five iterations. Here

we concern the behaviour of b, and &, they are summarized in the
table below.

Mean, Variance and Mean square error

N 90 180 360

by a by a; by a
—0.772 0.461 —0.783 0.473 —0.789 0.490
My=3 0.647 1.74 0.350 0.707 0.165 0.312
0.725 1.89 0.378 0.778 0.176 0.322
—0.761 0.468 —0.778 0.481 —0.788 0.492
5 0.507 1.39 0.298 0.636 0.171 0.299
0.660 1.50 0.347 0.673 0.186 0.305
—0.734 0.469 —0.774 0.483 —0.789 0.490
9 0.405 1.03 0.210 0.590 0.159 0.310
0.843 1.13 0.276 0.621 0.172 0.320
—0.776 0.450 —0.784 0.474 —0.790 0.489
Anderson 0.577 1.29 0.246 0.557 0.150 0.282
0.634 1.54 0.271 0.626 0.161 0.295
—0.780 0.440 —0.785 0.471 —0.790 0.487
Scoring 0.552 1.50 0.228 0.619 0.150 0.347
0.594 1.86 0.252 0.751 0.161 0.365

—0.8 0.5 —0.8 0.5 —-0.8 0.5
0.464 0.966 0.232 0.486 0.116 0.242

In this table, three numbers in a group denote respectively, the
mean, a hundred times of the variance and a hundred times of the
mean square error, from a hundred repetitions. The two rows at the
bottom of this table show the asymptotic mean and a hundred times
of the asymptotic variance of the maximum likelihood estimator.
There are a little differences between Anderson’s and the scoring
procedures, but we do not discuss this point further, for the main
purpose of this section is to examine our procedure. All the variances
and the mean square errors of Anderson’s procedure are smaller than
those of ours except the cases of (N, My)=(90, 5), (90,9) and (180, 9).
But the differences become smaller as both N and M, increase. For
example, in the case of N=3860 and My=9, our procedure can supply
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almost the same estimates as Anderson’s or the scoring procedure,
while the computational time required for our procedure was about
1/4 of that for Anderson’s or the scoring procedure in our experiment.
Considering these simulation results, it may be concluded that K, needs
to be larger than 10 for our estimate to have the asymptotic proper-
ties discussed above.
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