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Summary

Let @, be an estimate of a parameter w in R?, » a known real
parameter, and #(-) a real function on R?. Suppose that the variance
of n'*(H(®,)—t(w)) tends to ¢?>0 as n— oo, and that &, is an estimate
of ¢. We give asymptotic expansions for the distributions and quan-
tiles of

Yu=n"0"Ud,)—Hw)) and  Y,=n"6.(t(@.)—Hw))

to within O(n~%?). It is assumed that (i) Ed,—w as n—oo; (ii) #(-)
is suitably differentiable at w; (iii) for =1 the »th order cross-cumu-
lants of @, have magnitude n!™" as m— oo and can be expanded as a
power series in n~™'; (iv) that &, has a valid Edgeworth expansion.
(Bhattacharya and Ghosh [1] have given easily verifiable sufficient con-
ditions for commonly used statistics like functions of sample moments
and the m.l.e.)

As an application we investigate for what parameter ranges com-
mon confidence intervals for a linear combination of the means of nor-
mal samples are adequate.

1. Introduction

This paper applies the results of Withers [5] to obtain Edgeworth
type expansions to within O(n~%?) for the distribution and quantiles of

Yu=n"t(@)—tw)le  and  Yup=n"H(t(®,)—Hw))/dn

where 7 is a known real parameter, ¢(-) is a real function on R?, &,
is an estimate of an unknown parameter o in R?, ¢*>0 is the asymp-
totic variance of »n'*({(®,)—t(w)), and &, is an estimate of ¢. Thus Y,
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56 C. S. WITHERS

and Y,, are standardised and studentised forms of t(@), respectively.

When considering Y,, we shall assume that the asymptotic covari-
ance of n' (®,—w) is determined by w-—so that ¢* is a function of w,
say ¢’=V(w), and that ¢:=V(®,): if this is not so one may always
augment o, and o to make it so. For example, if one requires an
asymptotic expansion for the Behrens-Fisher statistic,

Y,.= (X1 - Xz — s+ p) (St +-s3mp) 2,
where for i=1,2 (X, s?) is the usual estimate of (pti» 7) based on a
random sample of size n, from N(g;, o}), then one could take w=(g,,
tay 0% 03), H@)=py— 13, 0,=(X,, X,, 83, ) and n=min (n,, n,).
In Withers [5] the author gave formulas for Edgeworth-type ex-
pansions for the distribution and quantiles of random variables (r.v.s.)

whose cumulants satisfy Cornish-Fisher type conditions and have power
series expansions: suppose Y, is a real r.v. whose rth cumulant satisfies

(1.1) k(Y)=n 33 Am™,  r=1 with A,=0, Ay=1
i=r—1
in the sense that as n— oo
K,(Y,,):nfﬂ{ $ A,,-n‘”'+0(n‘f‘1)} for j=r—120.
i 1

i=r—

Let @ and ¢ be the distribution and density of a standard normal
r.v. Then P,(x)=P(Y,<x) admits the formal asymptotic expansions

P(2)=0(2)—¢(x) 53 n~"ho(a) ,
(1.2) 0P @)=~ 3 A (a) ,

P(@@)=o+ 3 n"g,()

where {A,(x), f(%), g.(x)} are polynomials in « and {A,;} given by Corol-
lary 3.3 of Withers [5].

For example, hy(x)=/fi(x)=g.(x)=Ay+An(*’—1)/6, and h(x)=(A}+
Ap)r/2+ (441 A5+ Ay) (2° — 1) /244 Aly(x® — 102 + 152)/72.

The coefficients needed to calculate 4,, f, or g, are

Ay Ay, for r=1,
A Ay for r=2,
Ap Ay Ay for r=3,

Ay, Ay Ag for =4, and so on.
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Thus the problem of obtaining the asymptotic expansions to within
O(n~**) for Y, and Y,, reduces to verifying that they satisfy (1.1) for
some coefficients {A4,;} and finding expressions for A, Ag, - -, Ae.

In order to use the results of James and Mayne [4] we assume
throughout that

(1.3) Eao,—o as n— oo

and the rth order cross-cumulants of &, have asymptotic expansions
of the form

(1.4) ez 3 kpom~t,  1<0,<p, 1557,

i=r—1

This condition holds for a very large class of estimates: c.f. Withers
[6].

It then follows from James and Mayne [4] that for ¢(-) a function
from R” to R? with finite derivatives at w, the rth order cross-cumulants
of #(®,) have expansions of the form

(1.5) k(o)) = 31 Knom~t,  1<¢,2q, 1Sj<7r.
i=r—1

Expressions for the leading {K;:r} in terms of {k;1-} and the
derivatives of #(-) at » are given in the appendix.

Setting ¢=1 and a,;=K°r it follows that Y, satisfies the cumu-
lant expansion (1.1) with

(1.6) A,.,;=a{1'/2a,.i .

Expressions for A, As,:-+, A for Y, are obtainable thus from the
appendix. That (1.1) is satisfied by Y, now follows by noting that Y,
is just Y,, with ¢=1 and t(-) replaced by ¢(-) where

(1.7) ta(@n) =V (&)™ (H&n) —Hw)) -

Consequently, A, -, Ag for Y,, are also obtainable from the ap-
pendix in terms of the derivatives of ¢y, at w. Thus together with
the formulas referred to above for the polynomials occurring in (1.2),
this yields expressions for the distributions and quantiles of Y and
Y,, to within O(n~%%). For further convenience explicit expressions for
Ay, Ag, -+, Ay for Y,, and Y,, in terms of the derivatives of ¢ at o,
are given in Section 2, thus yielding explicit expressions for the dis-
tributions and quantiles of Y,, and Y,; to within O(n™*?) in terms of the
derivatives of t at w and the leading cross-cumulant coefficients of @,.

Section 3 gives expressions for the error in the tests and con-
fidence intervals for #(w) based on the C.L.T. approximation, and in-
vestigates the two most commonly used approximate confidence intervals
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for a linear combination of means of normal populations, {N(z:, v)}
based on sample sizes {n;}. In particular we show that
(i) when my/n, is large the C.I. for p,— #; based on

(p1— pra— pu+ o) (D my+ Do) ™2 2 N(O, 1)

is unsatisfactory unless /v, is very large (>18 for n,=5, n,=40),
while that based on

(1= pra— i+ ) B+ 00) 72U g+ 1 m) 22

is unsatisfactory unless v,/v, is very close to 1;

(ii) when my/n, is large the C.I. for the pooled mean (Mg + 10 p25) (14
+mny) based on the approximate normality of the studentised sta-
tistic is unsatisfactory unless v,/v, is quite large (>2.2 for n,=5,
n,=40), but that based on the t-distribution and the assumption
of equal variances is satisfactory provided w,/v, is not too small
(>0.2 for n,=5, n,=40);

(i) when n;=mn,, the error in the C.I. for g,—p,~the error in the
C.I. for the pooled mean and does not depend (to a first appoxi-
mation) on whether the statistic used assumes that v»,=wv,: the
error in the level of the 2-sided C.I. of nominal level 20(x)—1=
2Xxthe error in the level of the 1-sided C.I. of nominal level @(x)
L =214 +-t)fa(x)nt using N(O, 1)
< —(—tP(1+t)"a(@)ni*  using to e, s

where t=wv,/v, and a(x)=¢(x)(2*+2x)/4 is given in Table 1; thus

when n,=n, the ¢,,, ., approximation is more than twice as ac-

curate as the N(0, 1) approximation and is satisfactory if »,>15

(or if »;>8 and the variances are not too unequal).

2. The cumulant coefficients of Y,, and Y,

In Section 1 we saw that Y, satisfies (1.1) with A4,,=a;"%a,, where
a,; is given by setting ¢=1 and «,=1 in K;r. The appendix then
gives @y, ay, -+, as  These may be conveniently expressed by setting

biyes, =104, - + 0, #(2)},-, Where 0,=0/0z;, and using I“”"'(Zi :’9[;> to indi-

cate the summation over a product of a first derivatives {t,}, b second de-
rivatives {t;,},--- and cumulant coefficients with a, superscripts and B
(variable) subsecripts, k=1,2,-... This notation does not define these
terms uniquely. We do so as follows. Suppressing the summation of

repeated suffixes over their range 1,--., p, define Iz< g):tikfft,,

L(§)=th, L(2)=tke, B(3) =ty
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3(2)) = tikfjtjmkf‘ ’ 14( 3 ) =tttjtktzk§m ’
2

o0) =tk kit Tu(5o0 ) =tk ikt

and I301 (ggg) = tik;jtjktkfmtmkint,‘ .

The coefficients {a,;} needed for the first two polynomials in (1.2)
are a,=tw), a21=Iz<g>,

au*L<(1))+Im( )/2 aaz—fa< >+3Iﬂ(oo>
w=E{5 )+ 2 0 ) +1a{g6) [2+5n( o) -

and ap=1 ( 3 ) +12I, (gg) +12L, ((2)3(2)> +4Ly ((2)(2)(2)>

Let (a,;). denote a,; with ¢t replaced by t,. These can be expressed
directly in terms of the derivatives of ¢{ by using ki’ ... to denote
03w, - +0[dw; ki’ and setting

L(33)=thiititt,, L{g7) =kikist

L(G3)=kmitits, (3 =ittt

L(T3) =ttt L(Go0) =thRn bt
L(T5y) =t htdetthritata, Tu(pr0) =tdeit detiutiernt,
and I (gg?) — It KPR o

Similar terms are easily distinguished by writing them in ‘mole-
cular’ form, one ‘bond’ for each repeated suffix. For example

22\ . ki* 2\ . .. e
Lu(go) 18w, Dt H(55) is K=kt
1 2
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Differentiation yields

o)+l § )/ =1(§) " {6(G3) /2 2:50)}
0)—3(51) - 31(30)}
(8)~k{ot) ~5(63) 2+ o) ~21u(T) ~ 1a(G) 2]
=) {800+ § )2 {5(EE) +25(§6) ) +(35)
+1{G50) L (a1 )<+2-'m(22>+4%(§%§) 2§07 +21( G0

+2ka(506) |+ 7§ ) {B(E) +2m(GE)} /¢

(@10)1=0, (a)=1
il

{
worei{3) 7
et 3 4

and
o2 ) (23 o022 o1(328) 101 32
~81(oo) ~245:(50) | —65(5 ) (Gt +28 (G0

(A0 ) =3n(5E) >3] -

In particular when plugged into the expressions in Section 1 for
hi(x) and hy(x), this gives the distribution of Y, and Y, to within
O(n™72).

3. Some examples

In this section we apply the above results to investigate the error
in the level of commonly used confidence intervals for a linear combi-
nation of the means of normal populations, and discover for what
parameter ranges they are adequate.

Tests and confidence intervals (C.I.s) for t#(w) are often based on
Y,~N(0,1) where Y,=Y, or Y,. Let Y, be a continuous r.v. whose
distribution satisfies (1.2). Given a in (0,1), set x=@'(1—a). Then
the errors in the level of the one-sided test or C.I. of nominal level
1—a corresponding to “Y,<x” or “ —x<Y,” are

e(@)=P(Y,<2)—(1—a)= —¢(x) 3 n""h.(a) ,

and P(—2<Y,)—(1—a)=—e,(—x), respectively. Similarly, the error in
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the level of the two-sided test or C.I. or nominal level 1—2a corre-
sponding to “|Y,|<z” is
E.(x)=P (| Y,|=2)—(1—2a)=¢.(%) —e,(—%)

~2¢(x) i %" "hy () , since h,(x) is an even function
r=1

for r odd.

Example 3.1. Suppose that random samples of sizes n,,---,n, are
drawn from k normal populations with associated parameters (g;, v,),
1<j<k. Independent estimates {z;, ¥;, 1<j=<Fk} are obtained such that
fi~N(py v,/m;) and f;9,/v;~y}, where f,; is known. (Typically f,=n,
—1 but for regression models other values are possible.) To obtain a

C.1. for é a,p, for given weights {a,} it is common to use the approxi-
1
mation Y,;~N(0, 1) where
k
Y,.=0;'3) a,(ft;— p,)—the generalised Behrens-Fisher statistic—
1
and
k A
oi=>)ajv,/n; .
1
k
Set C?)n‘:()&lf "y ﬁln 1}1»' ) ?A)k)r w'—_(lul" Cty Mk Vit ’Uk)’ t(w):%‘_, Al
n= ﬁ‘, n;, A,=mn,/n, v,=f,/n, p=2k. (Several alternative parameterisa-
1
tions are available.) Using «.(9;)=vi(r—1)!(vn/2)""!, one obtains for Y,
E.(2)/2= —e,(—x)=e,(2) = —Vua(z)(1+0(n™))
k -2/ k
where V= (S‘_. c,.> (5‘_, clf fi>, c;=a;/n;, and a(x)=(x+x*)¢(x)/4 is tabled
1 1

below.

Table 1
Nominal 2-sided level 509 80% 909 959% 989% 999%
Nominal 1-sided level 75% 902% 95% 97.5% 999% 99.5%
a(x) .07796 .1486 .1572 .1387 .09939 .07109

Also (Z’:} fi) —1§V'21§(miin f)74, (the lower bound being attained when
¢./fi=cy/fi and the upper bound when ¢,=0 for 7+ I such that f;=min f).
Thus from Table 1 we see that for the two-sided 95% C.I. to‘ have
error less than 19, we need i}f,>2a(x)/.01:27.7. Similarly for the



62 C. S. WITHERS

two-sided 992, C.I. to have error less than (1/2)%, we need Ek} fi>2a(x)/
1

.005~28.4. Thus (i) if the total degrees of freedom is less than 28,
this C.I. should be avoided, and (ii) if the minimum degree of freedom
is greater than 28, this C.I. is acceptable—in the above sense. In the
intermediate case, one may estimate the error by f],,(w)z—zvz,a(w)
where Vﬂ is V, with {c,} replaced by {a*,/n;}. For example, if k=2,
f,=m,—1, n,=5, n,=40, then the two-sided 95% error is less than 1%
if efe;>2.24; in particular this is so for a,=—a,=1 if »/v,>18, and
for a;=mn,/(n;+ny), a;=ny/(ny+n,) if v,fv,>2.2. Thus in this intermedi-
ate case, (iii) this C.I. is going to perform badly when the variances
are fairly equal; and (iv) the error in the C.I. for the difference be-
tween means is much more sensitive than the error in the C.I. for the
weighted mean.

If instead of Y,,~N(0, 1), one used a C.I. based on Y,,~¢, (Student’s
distribution with f degrees of freedom), then the error in the level of
the nominally 1—a level one-sided C.I.s “—t,, ,<Y,” or “Y,<t,,..” is

@) =e,(ts,1-.)+ 0,1 —(1—a)=(f"'—Va)a(x) +O(f "+ n7?)
and the error in the nominally 1—2a level two-sided C.I.
“Yol<t;i.” is 2¢,(x); this error reduces to O(n~’) if one chooses

Ff=Vi!, as defined above. (This uses the result t,, ,=z+f ' (2*+2)/4
+0(f™).)

Example 3.2. Another common C.I. for éaiyi for the situation
described in Example 8.1 is that based on thelequal variance assump-
tion, i.e.

n'*(w,)~1,
where

k

Ho)=Vi®) " SN alu—p),  F=31,

and
Vio)=£(3 fo)(Satia)

This only gives an exact result when the variances are equal, though
the corresponding C.I. is consistent when an;'f;' does not depend on 4.
The error in the level of the one-sided C.I.s is ef=P,(y,)—(1—a) where
Yo=0n"%,, ., {a,} are the cumulant coefficients of #(®,), and P, is the
distribution of Y,=n'"%a;"*(®,). Since #(®,) is symmetrically distributed
a,;=0 for r odd. Section 2 yields
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@y =v(3 v 0,) (X ai/2) (2 aivif2;)  where v=f/n,

and

Ap/3=Apn=2(3 v0,) (X vivi) .

(This implies that to within O(n%) the standardised distribution of
t(@,) does not depend on weights {a,}!). Finally, the one-sided error is

ex =0(y.) —n7'¢(Y)h(y.) +0(n ) — (1 —a)
=0(y)+n"'¢(y) {an" (2’ + 2)/(4») — Au(y’+9)/8} + O(n ") — (1 —)

where y=a;"*. (The two-sided error of the nominally 1—2a level C.I.
is just twice this.) This ‘second order’ approximation is represented
by the solid lines in Figures 1 and 2 below. The dotted lines represent
the ‘first order’ approximation e¥~@(y)—(1—a). Figure 1 corresponds
to

Case 1: k=2, a,=—a,=1, f;=n,—1 (a C.I. for p,—pg,;). (The above
{a.;} agree with (2.28) of Geary [3] as corrected by Gayen [2]). Figures
1a and 1b correspond to the two-sided 959 C.I. and the two-sided
999, C.I., respectively, for the case m,=5 and n,=5, 10, 20, 40 as the
variance ratio v,/v; ranges from 1/10 to 10. Points to note are (i) the

010 T | T | |

0-08— — — — 1st approximation ]
I~ 2nd approximation -

0-06 — —

o4l  PET== S
0-02

-0:00

Error

-0-02

=0-04

-0:06

~-0-08

-0-10 . | ]
01 0-2 05 1 2 5 10
Variance ratio

Fig. 1a. Error in the crude 2-sided 95% Confidence Interval for u;—p: when n;=5
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0-10 T T T I T

0:08[— 1st approximation I

— — — 2nd approximation
0-06 — . —

0-04 |- —

0-02— ’ —

-0-00

Error

-0-02

-0-04

-0-06

-0-08

01 02 05 1 2 5 10

Variance ratio

Fig. 1b. Error in the crude 2-sided 99% Confidence Interval for u;—p. when #,=5.

error for the 999, C.I. is about half that for the 959 C.I.—as is true
for the C.I. of Example 3.1; (ii) the first and second order approxi-
mations are reasonably close, and their difference decreases as =, in-
creases; (iii) the error increases as m, increases from n,; (iv) for a
two-sided C.I. of level .95+.01 the variance ratio should lie in (1/3, 8)
if my=n,=>5, in (3/4, 4/3) if n,=5, »,=10 and in (.9, 1.1) if n,=5, n,=20;
(v) for a two-sided C.I. of level .99+.005 the variance ratio should
lie in (1/3, 8) if n,=n,=5, in (2/3, 3) if »,=5, n,=10 and in (.8, 1.6) if
=5, n,=20.

Case 2: k=2, a;=2;, f;=n;,—1 (a C.I. for the two sample pooled

mean). Figures 2a and 2b give the error approximations for the two-

sided 952 and 999 C.I.s. Points to note are

(i) the error is much smaller than for Case 1 (as noted for the C.I.
of Example 3.1 in the ‘intermediate’ situation)—but the relative
difference between the first and second order approximations (on
the different scale) is much greater;

(ii) the error for the 992 C.I. is again about half that for the 959,
C.I.;

(iii) the error is no longer monotonic in 7, given n; and v,/v,; it tends
to decrease as either m, or n, increase;
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0-008 — —
— —— 1st approximation
B 2nd approximation .
0-004 (— 4
’,::T‘_":—: ZOiQ‘
= = e ——-— 10 -
=T e i
- —— 40 501
=0:000 |- ===
-0-004 —
g
e - 10
//
-0-008 —
49/
///
Z%0
-0-:012
-0-016 [—
| l
-0-020
01 02 05 1 2 5 10

Variance ratio

Fig. 2a. Error in the crude 2-sided 95% Confidence Interval for (niu1+ nape)/(n1+n2)

when 7;=5.

(iv) for a C.I. of level .95+.01 the variance ratio should lie in (1/3, 4)
if n,=mn,=5 and should be greater than .35 if n,=5, n,=10 or .2

if n,=5, n,=40;

(v) for a C.I. of level .994+.005 the variance ratio should lie in (1/3,
3) if m;=n,=5 and should be greater than .3 if n,=5, n,=20 or

2 if n1=5, n2=40.

Example 3.3. It may be of interest to give the first order approxi-
mation for @, as in Example 3.1 when f(w) is an arbitrary function of

{g} but does not depend on {v;}. In this case we have,

for Y,,,
hy(%) = f1(x)=g:(%)
(3 () () A,
and for Y,
hy(z)=fi(x)=g:()

{3 a3 e-a() v
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0-008 — -

- — — — 1st approximation -

0-004 |— 2nd approximation : |

-0-:000

-0-004

Error

-0:008

-0-012

-0-016

~0-020 I | | | |
01 0-2 05 1 2 5 10
Variance ratio

Fig. 2b. Error in the crude 2-sided 999 Confidence Interval for (s + nopus)/(21+n3)
when #7;=5.

k

where Iz<(2))=zt§‘r,-, Io1<g> thjfj: IZl< >

1 1
V,[R;.

i

k
;_‘ tiritytit;, and ;=

APPENDIX

Let ¢(-)=(t'(+), -+, t%(-)) be a g-dimensional function on R?, and let
@, be a p-dimensional r.v. satisfying (1.3), (1.4). Then the rth order
cross-cumulants of #(®,) have the form

(Al)  Kotr=gewen(t(@,))= 3] S Kpem~t, 1<a,<q, 1SjS7.

=7

Set A*=t%(w), and Aj..; =[0, -0, t*(%)].-./r! where 9,=0/ox,. The
coefficients needed for the »th polynomial in the Edgeworth expansion
for the distribution of #(®,), 1<r<2, are as follows:

r=0: Kf=A=tYw),
K,ab=A‘:A3k;'f ,
r=1: =AL kY + Akl ,
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= ATAD AT 42 3 As AL ATk

r=2: K&=ATANY+3) AL AT +(3 3 A AL+ 245 ALk
+2 30 ATALKIK]

Kpri= ATAL A AR +2 Z‘, A5 ALAL ALK ™+ (6 5_‘, A%, ALATAL
+4 Z AL AL ASANK R BT
For r=3, 4 the coefficients are given by

i
Kiil...ir — 2 jvviil...ir

j=r—1

where ,Vir~ir is the coefficient of n~* in the expansion of ,V'r*r in
powers of m~!, ,Virir= Va4 g, Vit is the term ,{-} in the
expression for Krr given by James and Mayne, ,_4'vr=0, and the
other {,4v*} needed for the rth polynomial in the Edgeworth expan-
sion of the distribution and quantiles of #(@,), 1<r=4, are as follows:

r=1: 4=A%,
r=2: A0=23 AALEH
r=38: odt= A%k +3ALKE
(47 =2( A8 A"Ak+A':A’,’lA,i+A':A’;A;,)k‘f"k’
123 (BA%RALAS+2A% AL, AT+ 2A% AL AL E ™,
red: AP=(33) ATAL+AAL AR +(2 3] AL AL +3 31 A% A
+6(33 (A% Al + 248 Al + AR Al + Alen A3} TR
(A —2( A% AL AT A+ AT AY, As A+ ATALAS, AT+ ASAL AL AL, R
1230 (BA%,ALALAL+2A% AL, AL AL +-2A% AL AS, AL,
F2A% AL AL AL YK P+ [12 3] {2A%mpAl ATAL
+ A% ASATAT+ AJAL AL+ AJATAG)Y
43 {(BA% AL Al BAL A Al + 245 AL, Af) AL
240 AL, ASAL Y TS .
(For, James and Mayne [4] give K= r in terms of {k"*r=k"""(@,—w)}

in the form

(AZ) K ir= —i jVi‘."i"-i-O(n—k_l)

j=r—1
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where ,Virir consists of the terms of magnitude n™/, under the as-
sumption that E &,=w; for example, 1V“=A‘:,-k‘f. To remove this as-
sumption we simply replace Af.... by

A?l---i,= [0s,° - - 04 t*(®)]o=gs, /1!

in their results and substitute the Taylor expansion
(A3) A = il...i,+<“1f 1>Agl...,-,iki+(’”j:z)Az...iruk%er--~, rz0
to obtain

(A4) Kirir= é jVilmi’—i-O(n-k_l) )

J=r—-1
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