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Summary

By representing the location and scale parameters of an absolutely
continuous distribution as functionals of the usually unknown probability
density function, it is possible to provide estimates of these parameters
in terms of estimates of the unknown functionals.

Using the properties of well-known methods of density estimates,
it is shown that the proposed estimates possess nice large sample prop-
erties and it is indicated that they are also robust against dependence
in the sample. The estimates perform well against other estimates of
location and scale parameters.

1. Introduction and estimation

Let f(x, g, 0) and g(x) be two probability density functions (p.d.f.’s)
such that

(1) f(x, p, 0)=07"g((x—p)/o) .

Note that it is easily seen that

(2) o= S: ¢(x)dw / S: P, py o)

and

(3) p= [Sl zfx, 1, o)dax— Sl wgf(x)da::l/gl SHx, gy o)da .

Since, generally speaking, g and ¢ are unknown, the quantities I=

Sm Sz, p, o)dx and stm zfx, p, o)de are unknown. Thus one way
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40 IBRAHIM A. AHMAD

to estimate 4 and o is to estimate I and J and then plug these esti-
mates into (2) and (3), respectively. Note that it is assumed that

oo

So_o g°(x)dx and S xg*(x)dx are known. Since I and J are functionals

—oo

of the unknown p.d.f. a self-suggesting technique to estimate I and J
is to non-parametrically estimate f and plug this estimate into I and
J. An equivalent representation of I and J suggests a simpler but

equivalent method. Write I= r f(x, #, 0)dF(x, p, 0) and er xf(x,
¢, 0)dF(x, ¢, 0). Thus we propose to estimate I and J by:

(4) =" f@dF ),
and
(5) I=\"_af@aF,@)

where f(x) is an estimate of f(x) and F,,(y)=7n1— Sn_]l I(X,<y) is the em-
i=

pirical distribution function (d.f.) of the d.f. Fi(x). Note that both I
and J are special cases of a more general functional M given by :

(6) M=\" @)f (@, 1, dF(@, 1, 0)
where r(x) is a measurable function. Thus we may estimate M by :
(7) M=|" r@)f@)dF ) .

Unless otherwise specified all undefined integrals extend over the entire
real line. So all is remained is to find a suitable way to estimate f(x,
¢, 0). The literature is rich with different ways of estimation p.d.f.’s
from nonparametric viewpoint. A recent monograph on the subject is
by Tapia and Thompson [15]. One technique for nonparametric density
estimation that finds wide application is the so-called “kernel method ”
originated by Rosenblatt [11] and later developed by many authors,
Parzen [10] and Murthy [9], among others. Let X,,--., X, be a ran-
dom sample from f(x, g, o), and let {a,} be a sequence of real numbers
such that a,—0 as n— oo (further conditions on {a,} will be stated in
the sequel). Further let k(-) be a known Borel measurable funection
satisfying the following conditions:

(8)  Kw)=0, S k(u)du=1,

|u|k(u)—0 as |u|—o0, and supku)<oo .
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The kernel estimation of f(z, g, ) is given by:
(9) =0 | He—w/eldF,w=ma)" 31 HE—X)e]
Using the estimate (9) of f(x) in (7) we get
(10) M=a;* | | r@l(e —w)ja)dF,@)F @)
=(na,)" 33 33 HXDK(Xi—X))fan]

Note that the estimate (10) is equivalent to the estimate W, proposed
and studied by Higgins and Tichenor [7] where,

(11) W.=In(n—1)a.]™ 3 > a(X,, XE(X:— X))[a] .

Thus all properties derived in the present paper do apply to W, and
thus the conditions imposed by Higgins and Tichenor [7], see their
Theorem 3, for the asymptotic normality can be weakened, see our
Theorem 2.3, and we can demonstrate that W, is weakly and strongly
consistent under the conditions of Theorems 2.1 and 2.2 to follow. The
large sample results of M, are presented in Section 2.

When f(x) is square integrable (i.e. M<oo when y(x)=1) then
another method for density estimation may be used in estimating M,
namely we can use an orthogonal series expansion, since whenever f(x)
is square integrable then

(12) f@)=30,0/2)

where é,:g f(@)¢,(x)dx, j=0 and {¢,(-)} is an orthonormal basis of f(x).

We estimate f(z) by (see Schwartz [13], Cencov [6], and Kronmal and
Tarter [8]):

(13) ﬂ(w){i_}_": 6,6,x) ,

where é,:n“ﬁ‘.q&,-(Xi), 7=0, and ¢(n) is an integer-valued function
i=1

such that g(n)— o as m—oo. We assume that |¢,(x)|<C(j4+1)77, for
some y=>0 and a positive constant C. Note that a popular choice of
¢,(x) is the normalized Hermite polynomials:

(14) ¢,(0) =25y ) Ve H () ,

where H,(x)=(—1)¢*"(d’[dz")e™>"", j20. For this choice |¢,(x)|<Ci(j+
1)-% if f(r) has compact support and |¢;(x)|<C(j+1)""* in general
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(see Szego [14]). We can write f(x) as follows:

n

(15) ﬂ(w)=%z 0.z, X)) ,

i=1

where O,(x, y)zgqu(x)qu(y). Thus another estimate of M is given by :
]:

(16) Mz=§ @) f @) () .

The large sample theory of M, is presented in Section 3. Some con-
cluding remarks are given in Section 4 indicating how the large sample

properties of M, and M, may be preserved if the observations X,---,
X, are no longer independent and also the performance of the esti-

mates M and Mz relative to other methods is indicated.

2. Large-sample theory of M,

THEOREM 2.1. Assume that {a,} is such that na,— oo as n—oo
and suppose that E|r(X)[<oco. Then

(17) E|M,—M|—0 as n—oo.

Remark. Note that under the condition of Theorem 2.1, M,—+M
in probability, as n— oo.

PrROOF. Note that
(18) E|M—M]|

=E |o;* | | no)l@—w)/a,dF@)3iF,w) - | 1)/ @iF @)

<E

ait | | ral@—wladF,@)F )
—ait | | okl @—wy/eJdF @dF )

+E

a;! § S H@)k](z— w)/a,dF()dF (w)
—ait | | el @—w)a)aF@dF )|

+|| ref @iF @) —a;t | | ki@ —wieldF@EF@)
=BEL+EL+I,, say.

Thus to prove the theorem we need to prove that EI,—0, E ,—0,
and I;—0 as n— oo,
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(19) L= |§ @)E fi(@)— f@dF@)|—0  as n—ooo,

since E ﬁ(x)-—f(w)—>0 as n—oo at all continuity points z of f when-
ever na,— oo (Theorem 1A of Parzen [10]), and since r(x)[E f}(x)— f(@)]

@) S r(x)[E f](x)—%— f(x)]f(x) which is integrable and converges to an
integrable function 2y(x)f*x), implies that the Lebesgue dominated
convergence theorem (LDCT) applies (Royden [12], p. 89) and (12) holds.

Next, with g (x)=7(x) E fl(ac), we have
(20) E L=E || (o) B/)F. @)~ | 12) Bf@)dF @)

<[n™* Var g,(X)I"*,
which converges to 0 as m— oo, since Var g,(X,)=E gi(X,)—[E g.( XN
and since for any r=1, E g;(Xl)-_-S gu(x)f (x)dx—»S v () f¥(x)dx as n— oo,
from Theorem 1A of Parzen [10] and the LDCT (assuming that Sr’(x)
- fox)dxr< o). Finally, we have

21) EL=E || HOF(@)F@)— | 1(2) B f(@)dF()]

<B [ s /i@ —BA@) | re@dre)]

<E" (sup| /@)~ BA@ B {n~t 31Xl

which converges to 0 as n— oo, from Theorem 3A of Parzen [10]. This
completes the proof. QED

Our next result provides for the strong consistency of the esti-

mate M

THEOREM 2.2. Assume that {a,} are such that for any e>0, ﬁ‘,
n=1

exp (—ena2)< oo and that k is a function of bounded variation. Suppose
that B |r(X))|<oco. Then

(22) M,— M with probability one (w.p. 1) as n—oo .

PrOOF. From the proof of Theorem 2.1 we need only to show that
I,—0 w.p. 1, =1, 2.

(23) L=sup ()~ E /@) | Ir@)|dFia)

<(¢fa,) sup | Fyfx)— F@)| | 1r@)|dFy(a)
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where the last inequality is obtained by integration by parts with 2
the total variation of k(). Since Slr(x)[dF,,(x)—»S |7(@)|dF(x) w.p. 1 as

n—oco and note that for any >0

(20 5}P[sup | Fi(@)— F@)|>(ca,/)]S2 5] exp (—nea, ) <oo .

Thus I, —»0 w.p. 1 as n—co. Next, note that if g.(x)=7(x) E fl(x), then
@) L=|n"350,X)-Eg(X)|=|n BV, ~BY,[, sy,

which converges to 0 w.p. 1 since EY,,—»E (X)) as n— oo and Y-,
Y.. are independent identically distributed random variables, thus the
strong law of large number applies. QED

Remark 2.1. Note that the condition E y*(X;)< oo (E [¢(X))]|< ) re-
quired in the proof of Theorem 2.1 (Theorem 2.2) is not satisfied in
the Cauchy density case and thus a different proof is needed when
estimating the location and scale parameters of the Cauchy density.

Remark 2.2. An iterated logarithm law-type result is possible to
derive from Theorem 2.2 as follows: let 4,=sup|F,(x)—F(z). Then it

is easily seen that with probability one I,=Ca,4,<Ca,n"*(log log n)~'?2,
also with probability one, L<|n™ ﬁ "X,)—E r(X,)‘ =Cn'*(log log m)~'"2,
i=1

and finally if f(x) has bounded first derivative and Slulk(u)du<oo,

then L,<Ca,. Collecting terms we see that with probability one |M,—
M|<C max (n'%a,(log log n)™'?, a,).

Remark 2.3. Note that no conditions on f (except the moments

conditions in Theorems 2.1 and 2.2) are imposed which means that Ml
leads to competing estimates of the location and scale estimates to
those already available in the literature that are consistent under mild
conditions and are asymptotically normal (see Theorem 2.3 to follow).
The assumptions imposed on the kernel k() and the sequence {a,} are
common and are satisfied by a large number of kernels and sequences,
respectively, see Tapia and Thompson [15] for details.

Remark 2.4. 1t is possible to improve on the result of Theorem
2.2 and obtain a rate if we allow for some stronger conditions. Pre-
cisely if in addition to the assumptions in Theorem 2.2; k(u) is such

that Su’lc(u)duzo, r=1,2,---,m—1 and Su’"k(u)du<oo, f has bounded
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derivative of order m, and let {a,} and {b,} be two sequences of real

numbers such that arb,=o(1) and for any >0, f} exp (—enaz/bl)< co,
n=1

then

bnlMl—-Ml——»O w.p. 1 as n—oo.
PROOF. Proceeding as in Theorem 2.2 we have with probability one
bl M M| (b,Je.) sup| Fo(e)— F@)| | 11@)|dF.(@)
5,508 B i(0)— £@)[ | Ir@)|aFa) + | 1@ldF @)
< {(¢bu/a,) sup | F.(w) — F(@)|+2b, sup |E fi(w) — F@)]}
| ra)ldF @) .
But since b, sup |E f(x)— f(x)|=0(b,ar)=0(1), which follows by using
Taylor’s expansion with the fact that S wk(u)du=0, r=1,---,m—1 and

Slu’"|k(u)du<oo, and since for any ¢>0

(26) 3 P [sup|Fy(@)— F(@) |2 (ean/ub)]S2 3} exp {—('ai/pb)} <oo
the remark is proved. QED

Remark 2.5. Another possible way to estimate of M can be given
as follows

@7) it,={ )fr@is

The estimate is of nature similar to that of Bhattacharyya and Roussas
[6]. It is possible to show that E|M,—M|—0 under the conditions

of Theorem 2.1 and that |M;—M|—0 w.p. 1 under the condition of
Theorem 2.2. The proof of the former follows exactly as in Bhatta-
charyya and Roussas [5] and is left to the interested reader, while
the second follows from the following ;

|3, — M sup|£i(@)—E £i(@)| | @B f@)+Fi(z)ld
+| r@) I E A (f@)ldz

which converges to 0 with probability one as n— oo as in Theorem 2.2.
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Note also that the result of Remark 2.1 continues to hold for M,. One
major drawback of the estimate M, is its asymptotic distribution. While
as we shall demonstrate in Theorem 2.3, M, is asymptotically normal

under mild conditions, the asymptotic distribution of M, is not easily
obtainable.

THEOREM 2.3. If mal— oo and na’™—0 as n— oo for some integer
m=2, if o (given by (34)) is positive and finite, if f has m derivatives

with bounded mth derivative, and if Su’k(u)du:O, r=1,---, m—1 and
Slulmk(u)du<oo, then

nY 2(MI—M ) is asymptotically normal with mean 0 and variance 2° .

Proor. We divide the argument into two parts, first we prove
that n‘/z(M—E Ml) is asymptotically normal with one and 0 and vari-
ance 2¢ and then we show that »'A(E M,—M )—0 as n— oo, Now,

@8 M—EM=a;' | | rokl@—w)/aldF@dF.w
~a;t| | r@kl@—w)/a,dF@dFw)
— (na,)"k(0) E 1(X)
=a;* | [ ekl —w)/aJdIF ()~ F(@)dIFy(w)~ Fw)]
+|a:t| | r@kl@—wyaldF@dF@w
+a; | | rai(e—w/eF @R )
—207" | | r@)kl@—w)/a,JdF@)F )|

—(na,)'k(0) E v(X,)=A4,+B,+C,, say.

Now, clearly if na:— oo, then n'’C,—0 as n—oo0. Next, let d[I(y=x)]
=I(ySx+dx)—I(y<z) and set Wyx)=dI(X;=x) and W;(u)=dI(X,=u)
so that P[W,(x)=1]=dF(x) and P [W,(u)=1]=dF(w), j=1,---,n. Hence

29) B d[Fy(z)— F@)ld[Fy(u)— Fw)]|
= [ B dU(X, <)~ F@)} {5 dUI(X, S0~ Fw) |

j=1i=1

-

<31 3 [E (Wy(2)~ F(@)(Wiu)— F(w))]

2 |B (W () — F(x))(W(u) — F(u))]

Jj=1
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=4n(dF(2))(1—dF (%)) (dF ) (1 —dF(w)) < 4nd F(x)dF(u) .

Hence using Fubini’s theorem we get
n'?E A,<4n"q;! g S r@)k[(x—w)/a,JdF(x)dF(u)=4n""*E M,

which converges to 0 as n— oo, since E M,—M as n—s oo. Finally let
us evaluate B,. Write B,=B,,+ B,,, where

B.=a;' S g (@)@ —u)/a,JAF (@)dF(u)
—a;! S S {@)kl(zx —u)a,)dF (x)dF (x)

Bu=a;* | | r@l(e—w)/e.)F,(@)dF (u)
o' | | @M@ —w)a)F@iFW) .

We shall prove that B,,, 1=1, 2 are asymptotically normal. Let g.(u)
=a;lg S H@)k[(x—w)/a,)dF(z). Thus B,,,:% ,21 9.(X,)—E gn(Xl):%L— ,Zi

V.;» say. Note that V.., V,, are independent identically distributed
random variables such that EV,;=0, E V,;—¢* as given in (34), to see
this we note that

80) EgiX,)= S g(w) f (w)du
=a;*{ | | r@k@—w/alr@rwky—wa.]
- f(y)f (w)dxdydu
= | | k@ @wt+ws@wroras+of@sta
- f(w)dudwdz
gg S k(w)k(z)[g fa(anw+u)72(anw+u)du]l/a
. [S fUaz+u)rH a2+ u)du} e
. [S fs(u)r(anw+u)r(a,,z+u)du]mdwdz ,
where the inequality is obtained by Holder’s inequality. Thus
(31) lim sup E 3(X) < | /(o) (@) .

On the other hand since gi(u)— f*(u)r*(u) we have by Fatou’s lemma
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that

(32) lim inf E g4(X) 2 S @) .

Hence it follows from (31) and (32) that E g,’.(Xl)—rs =)y (x)dx. Thus

E V,?,-—»S 7() fi(x)dx— M*=q* (say). Using similar argument we can also
show that

(33) B[V, p— | f@lr@f@-Mids  as nooo.

Thus »'?B,, is asymptotically normal with mean 0 and variance ¢* given
by :

(34) 02=S (@) f()de— M2 .

By an entirely similar argument we get that if k,(z)=a;’ S kl(x—u)/a,)

AF@)=F f(z), then Bu=—- 3 f(X)h(X)~E r(X)h(X)=n"" 3 Wo

where W,,,- -+, W,, are independent identically distributed random var-
iables such that EV,,=0 and E V2—¢® as n— oo, for

35)  E(X)hi(X))
=§ P)hi(@)f (@)do
=a;* | | | @kl —valkl@—a/alfw)f ()f @)dadydz
={ | | k)£ 0 —a,0) (2~ a)r*@)f @)dadude

<{ | K[| Pe-awreds) | re—ooreds]”
: [S f”(x)rz(x)dx} Y dwdz .

Thus

(36) lim sup E A(X)RAX)S | S@)r (@) -

But also by Fatou’s lemma lim infErz(Xl)h,,(X,)_Z_g (@) (x)dx. The

balance of the proof proceeds as in B,,. Hence B, is asymptotically
normal with zero mean and variance 2¢°. To finish the proof we want

to show that n"*(E M,—M)=0(1) but this follows from
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(37)  n“|EM,—M|=n"?

| r@) B f@f@)do—| 1(e)f @)z
=n | @) fi@)— f@)] £ @)z
<Clnair)* sup | (@) | 17(@)] fz)dz=o(1) .

since | wh(@du=0, r=1,---, m—1 and E|r(X;)|<co. QED

Note that if nai—0 and if f”(x) is bounded for all  with Suk(u)
du=0 and Suzk(u)du<oo, then Theorem 2.3 holds. Note also that if

one is interested in an asymptotically normal confidence interval for
M, a consistent estimate of o“:S f(@)[r(x)f(x)—M]dx is needed. One

such estimate would be
(38) 3= [r@)f @)~ MTdF(x) .

It can be shown in a straightforward but tedious way that ¢? is a con-
sistent estimate of ¢>. We leave the details to the interested reader.
Thus an asymptotically normal confidence interval of M is given by:

(39) M+ (6, /n)2,

where z,,, is the standard normal variate such that P[|Z|=z.,]=1—aq,
where Z is the standard normal random variable.

3. Llarge sample theory of M,

THEOREM 3.1. Assume that f(x) is uniformly continuous of bound-
ed variations, and square integrable, further assume that E |r(X))['< oo,
then

(40) E|M,—M|—0 as n—oo.
Proor. Note that

@)  E-M=E|| | r@0.6 WaF@F.W - 1@ /@@
<E || | r@)0u@ aF@IFW)
~[ [ r@0.@, aF@arw)|

+E |g g 7(@)0.(x, Y)AF(x)dF(y)
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_S S 7(@)0.(x, y)dF(x)dF(y)|

+|| | r@w.@ir@dre - o s@ir@
=EL+EL+I,, say.
But as in Theorem 2.1, L:S H(@)[E fi#)— F@)]dF(z)—0 as n— oo using
LDCT and since (see Ahmad [1], Theorem 2.2) E Fu@)— f(x) as n— oo
whenever ¢*(n)/n—0, as n— oo for all z. Next, again E L,=E IS r(x)-
E fz(w)dF,,(x)—S (@) E fz(fv)dF(x)l—m, as m—oo provided that E|7(X)P
< co. Finally, we have

2
’

#2)  BILSE" {suplfi@)-EA@) B 17 3 (X))

which converges to 0 as n— oo in view of Theorem 2.2 of Ahmad [1].
QED

THEOREM 3.2. Let f(x) be as in Theorem 2.1 and assume that
E|r(X)|<o and that for any >0, ﬁj} exp [—en/g’(n)]< oo, then
M—M w.p. 1 as n—oco .

Proor. In the proof of Theorem 2.2 we proceed to get
(43) Lgsup | @)~ B f@)| | Ir@)|dF @) ,

which converges to 0 and n— oo since by Theorem 3.1 of Ahmad [2],
sup| fi(#)~E (&) >0 w.p. 1 as n—co and | r@)dFy(@)—|1r@)|dF @)

w.p. 1 as n—oo by the strong law of large numbers. L, —0 w.p. 1
as in Theorem 2.2 and I,—0 as in Theorem 3.1 above. QED

To discuss the asymptotic normality of M, we recall that
)  M—E = | 1@, dlF,@) - FEUF.W)~F@)
+1] | r@0ue, vaF.@arw
+| | 0., YAF@)F,@)

9 S S 1(®)0.(x, y)AF (x)dF(y)
—A,+B,, say.
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But as in Theorem 2.3,
(45)  nEA,<dn SS 1(@)0(@, y)dF(z)dF (y)=4n""E M, ,

which converges to 0 as m—oo since EM,—M, as n— oo. Finally
write

46  B={|[ @0, WAF@IAF@)-| | r@)o, YAF@IF )|

+{| | 1@, parEaFw-{ | roo.@ viFr@arw)
=B+ B, , say .

Let g,(0)=| r@)0.(s, 9)iF(), then B,=n~'31g,(X) and Bn=n"3

i=1
9.X;). Thus proceeding as in Theorem 2.3 above with minor modifi-
cation it is possible to show that B,, is asymptotically normal with
mean 0 and variance o* provided that |6,|<C,(j+1) " for some integer
r=3, and (n/g(n))***—0 as n— oo, since (see Ahmad [1]) in this case
E fyx)— f(@)=0((g(n))~"2*Y). Thus if we collect this argument we
arrive at:

THEOREM 3.3. If f(x) is uniformly continuous of bounded varia-
tion, and is square integrable. If n/gi(n)— oo as n— oo and n/q(n) "+
—0 as n—oo for some r=3 and if |0,|SC(F+1)""", then n“*(M,—M)
18 asymptotically normal with mean 0 and variance 24°.

We conclude this section by writing that it is possible to estimate
M alternatively by ]VIZ=S r(ao)ff(x)dx and demonstrate the mean and

strong consistency of M, as those of M, above. The asymptotic nor-
mality is difficult to obtain.

4. Concluding remarks

1. Higgins and Tichenor [7] discussed the asymptotic relative ef-
ficiency of M, to the maximum likelihood estimates in the Cauchy case

(note that the asymptotic normality of MI and M, uses conditions that
apply to the Cauchy case) and shown that it is equal to 1 for both
the location and scale parameters. It is easy to check the asymptotic

relative efficiency of x and ¢ using Mi and using other competitor non-
parametric methods, such as rank statistics estimates, that are asymp-
totically normal. If we take the robust estimates L or M (see Andrews,
et al. [4]), then we can observe at once that our estimates approach
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the approximate normality under far less conditions and for certain
choices of the functions needed in the L and M estimates are better
and almost always at least as good as the L or M estimate.

2. Besides good large sample properties and the apparent good

performance as robust estimates of p and o, M is also robust if the
observations are no longer independent. Suppose that {X,} is a strictly
stationary strong mixing process, i.e., if a(a, b)=0(X,41, -+, X,,5) is the
o-field generated by X,,,,---, X,:» and if A and B are two measurable
events such that A €4(0, m) and B e o(m+n, ), then

(47 |P(AB)—P (A) P (B)|sa(n) ,

where a(n) is an integer-valued function such that a(n) |0 as n—oo.

If ﬁ-(x) is based on the first » observations of such process then the
large sample theorems continue to hold under suitable condition, e.g.,

if we consider fy(z), then Theorem 3.1 continues to hold if ﬁj} a(n)< oo,

while Theorem 3.2 continues to hold if for any >0, i {exp [—ep(n)/

@' (n)1H{1+ka(m(n))} p(n)<oco, where p(n) and m(n) are integer valued
factors, e.g., p(n)=[n"""] and m(n)=[n'] for some 2>0, and finally

Theorem 3.3 holds in this case whenever i a(n)<co. For details of
n=1

these results we use the work of Ahmad [2] and [1]. If one uses the

results of Ahmad [3] concerning f,(w) when {X,} is strictly stationary
strong mixing then it is also possible to establish extensions of Theo-
rems 2.1-2.3 in this case.

3. Observe here that our estimates are much simpler to compute
than the standard robust estimates and they are fairly robust them-
selves since this is indeed an inherent property of density estimation.
In addition to this, the rates of convergence in all three large sample
results are possible to establish and we established an iterated logarithm
result in Remark 2.4. The rate in the central limit theorem is possible
to establish, of course under some extra conditions, we could prove that

nH(M,—M ) approaches the normal at the rate a, while n'*(M,— M) has
the rate (g(n))~!. We shall leave the details out.
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