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Summary

In this paper, we define the index of performance of unbiased
estimators in the sense of Lehmann (L-unbiased), which evaluates the
power for the estimators to discriminate any wrong values of a para-
metric function from a correct one. We shall call the index discrimi-
nation rate of the estimator. The larger discrimination rate the esti-
mator has, the more desirable it is. An upper bound of discrimination
rates is obtained, which is given by the semsitivity of the probability
family under consideration. The diserimination rates of several L-un-
biased estimators are investigated. Moreover we discuss the conditions
under which the L-unbiased estimator is improved in the sense of dis-
crimination rate by the L-unbiased estimator depending only on a suf-
ficient statistic.

1. Introduction

Let X, X,,- .-, X, be independent and identically distributed random
variables with the common distribution P,, § € #, where @ is an open
interval in the real line. We write x=(x, %,,--, 2,) and let 3(x) be
an estimate of a given parametric function 7(4). Let W(4, d(x)) be a
loss incurred by d(x). We assume that the estimator 8(X) is unbiased
in the sense of Lehmann [4], that is, it satisfies the inequality

(1.1) E, W0, 3(X))<E, W(r, (X)), for 6,7¢6.

We shall call such an estimator L-umbiased with respect to the loss
function W, or simply L-unbiased. Since the inequality (1.1) implies
that E, W(r, (X)), as a function of r, takes the minimum value at 4,
we have under suitable conditions,
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1.2) E, W'(9, 3(X))=0,

where the symbol ' denote the differentiation with respeect to 6. By
differentiating (1.2) and using Schwarz’s inequality, we obtain, under
suitable conditions,

E, W'(0, 8(X))=vE, W0, 8(X)) vnI(0),
that is,
(1.3) E, W"(6, 3(X))/VE, W8, 3(X)) <vVnI(0),

where I(f) is the Fisher information. Note that (1.3) is reduced to
the Cramér-Rao inequality when W(6, é(x)) = {d(x)—7(6)}>. We are in-
terested in statistical implications of the inequality (1.8). We shall
investigate this inequality in more general situations, and show that
the left-hand side of (1.3) can be used for evaluating the performance
of any L-unbiased estimator.

Usually, the performance of an estimator is evaluated by the de-
gree of its nearness to the correct value of y(-). When dealing with
an L-unbiased estimator, however, the degree of its departure from
the wrong values of y(-) can be regarded as another measure for eval-
uating its performance. In fact, each L-unbiased estimator does not
come, on the average, closer to any wrong value of y(-) than to the
correct one. A question naturally arises as to what measure should
we use for evaluating the magnitude of their departure from the wrong
values of 7(-).

Generalizing the condition (1.1), we shall consider those functions
¢(x, ) which satisfy the inequality

1.4) E, (X, 6)£E,¢(X, 7) , for 0,7€6.

If we take c(x, 6)=W(0, 3(x)), the condition (1.4) is reduced to (1.1).
We shall say that the function c¢(x, ) with this property is contrastive
or it has contrastive power (see Remark in this section). One of the
natural ideas for evaluating the magnitude of contrastive power of
¢(x, 8) is to observe the rate of change of E,{c¢(X, r)—c(X, 6)} to small
changes in z at 4. But it must be normalized in a suitable scale, be-
cause any contrastive function multiplied by a positive constant is also
a contrastive function. For a normalizing factor, we consider the stand-
ard deviation v Var,{¢(X, r)—c(X, 6)}. Thus our measure for evaluat-
ing the magnitude of the contrastive power of ¢(x, 6) is defined as
follows.

DEFINITION 1.1. For a contrastive function ¢(x, 6), 6 € @, we shall
define its discrimination rate D(f;c) at 6 by
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D(6; ¢)=2lim A(z, 6; ¢)/|=—0|,

where

Az, 85 ¢)=E, {c(X, 7)—e(X, 0)}/¥Var, {o(X, r)—c(X, 0)} .

We define A(z, 6; ¢)=0 whenever the numerator vanishes. In particular
when c(x, 0)=W (4, d(x)), we shall write D(f; 3, W) instead of D(f; c)
and call it the discrimination rate of 3(X).

Remark. A function ¢(x;, ) with the property
E, ¢(X;, 0)<E, ¢(X;, 7) 0,70

is called the contrast fumction by Pfanzagl [5]. It is used for con-
structing the minimum contrast estimator é,,(X ) by solving the equation

2 $(X,, 0,(X))=inf 2 HX, 0).

It is well known that E,¢" (X, 0)/VE, ¢'(X, §) is—under suitable reg-

ularity conditions—the reciprocal of the asymptotic variance of é,,(X )
when n— oo (Huber [1]).

Some properties of contrastive functions and their discrimination
rates are investigated in the following section, where we prove that,
under suitable conditions, an upper bound of discrimination rates is
given by 4/m s(f), where s(6) is defined by

s(6)=21im p(P., P,)/|z—0|,
=0

and where p(P,, P,) is the Hellinger distance between P, and P, s(f)
is the sensitivity of the family {P,; 6 ¢ 8} to small changes in = at ¢
(Pitman [6]).

In Section 3, we treat the discrimination rates of L-unbiased esti-
mators. We first establish the inequalities

D(0; 8, W)=ss(0; d)=vns(d) ,

where s(d; d) is the sensitivity of the family of distributions induced
by 8(X). In particular this result implies the inequality (1.3). Since
the larger discrimination rate 4(X) has, the more desirable it is, a
reasonable index of its performance is D(6; 8, W)/v/n s(6), the ratio of
its diserimination rate to the maximum possible. We shall call it
efficiency of 3(X). We apply this formulation to several loss functions
and L-unbiased estimators.

In the last section, we consider the case where a sufficient statistic
T for {P,; 6 ¢ 0} exists. For the quadratic loss function, each (L-)un-
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biased estimator can be improved by using the Rao-Blackwell theorem.
So the following problem arises. Suppose that §(X) is L-unbiased with
respect to W(-, ). What form of loss function W does permit the
construction of the L-unbiased estimator which depends only on 7 and
is better than #(X) in the sense of discrimination rate? A result for
this problem is given there. We also investigate the properties of the
contrastive function &(#, 0)=E {¢(X, 0)| T=t}, and especially the relation
between D(0; ¢) and D(6; ).

2. An upper bound of discrimination rates

Let f(x, 6) be the density of P, with respect to a ¢-finite measure
#. We shall first prove the following lemma, which is essential in our
discussion.

LEMMA 2.1. For any contrastive function c(x, 0) and for all 6,z €
0, the following inequality holds:

2.1)  E{c(X, 1)—c(X, 0)} +E, {c(X, 0)—c(X, )}
S[E, {(X, 1) —e(X, 0)}*/2+E, {e(X, 0)—c(X, 7)}%/2]42

X [4n S WF@ D —VF@, 0)}2dp]1/2 .

PrROOF. We shall denote the joint density f(x,, 6)f(x;, 0)-- - f(x,, 6)
by f.u(x, 6). Using Schwarz’s inequality, we find

E, {o(X; 7)— (X, 0)} +E. {e(X, 6)—e(X, o)}
={ e, ) —c(x, 0} (V7266 D) + VA, D))
X VI, 0) —VF D)} dpen
< || e, 0 —c(x, 001 (VG )+ VFGe D)y

1/2

x4 | VI D —VFE DY
From the inequalities

{(VFux, ©) +Fu(x, )} S25 (%, T)+2f (%, 0)

and

| (V7 )~V =21~ || V7 ) V@, D)dp] |
§2n|:1—g vVfx, 7) v f(z, 0)dp] =n S WF@, 0) V7@, 0O)Ydp ,
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the lemma follows.
Put

Az, 05 ¢)= E, {c(X, 7)—c(X, )} +E. {¢(X, 6)—c(X, 1)}
T B {e(X, ©)—e(X, 0)P2+E, {¢(X, 0)—c(X, o))2]"

where we define i(r, 6; c)=0 whenever the numerator vanishes, and put
(2.2) d(0; c)=Nim A(z, 6; ¢)/|=—0]| .
T8

Moreover put

o(P, P)=[| (V7@ )~ /TG, O]
and
s(6)=21im (P,, P)f|=—0] .

o(P., P,) is the Hellinger distance between P, and P, and s(d) is the
sensitivity of the family {P,; 6 € # under consideration (Pitman [6]).
From this lemma, for any contrastive function we have the inequality

(2.3) d(@; )= v s(h), for all 6€6.

From now on, the following conditions are assumed.

(i) For almost all x, f(x, #) has a 6 derivative at each 6 €6, which
will be denoted by f'(z, 6).

(ii) For all 4,7 €6, E,c(X, r) is finite.

(iii) For all x € R", ¢(x, 0) is twice continuously differentiable with re-
spect to §. The derivatives at each 6 € & will be denoted by c¢'(x, 6)
and ¢’(x, 6).

Then we shall establish the following theorem.

THEOREM 2.1. If both E, (X, 7) and E,c"(X, t) are continuous in
0 and 7, then for all €6

(2.4) D(0; c)sv/ms(0) .
For the proof of this theorem, we need the following lemma.
LEMMA 2.2. Suppose that E, c*(X, 6) is finite for all 6 €¢®. Then
1151 E, {c(X, t)—c(X, 0)}*/(r—0)*=E, *(X, 6)
amplies

lim E, {e(X, )—e(X, 0)}/(r—0)=E, ¢'(X, 6)=0 .
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ProoF. Since the first equality is equivalent to
(2.5) 1151 E, [{e(X, ©)—c(X, 0)}/(r—0)—c'(X, 6)[P=0
(Pitman [6], p. 99, Corollary), we have

11351 E; {e(X, 7)—e(X, 0)}/(r—0)=E, (X, 6) .

From the definition of contrastive function, E,{c(X, r)—c(X, 6)}, as a
function of z, takes the minimum value at 4. Hence we have

lim E, {¢(X, 7)—e(X, 6)}/(z—60)=0,
as was to be proved.

Proor or THEOREM 2.1. We have only to prove the following
proposition: if for each 6 €8, both E,c*(X, r) and E,c"(X, r) are con-
tinuous in z, then

E, (X, 6)/2+E. (X, 7)/2

(2.6) d(ﬁ; 6)2131? [E, c’z(X, 5)/2_'_]3r ch(X, 2')/2]”2
and
(2.7) D(; ¢)=E, ¢"(X, 6)|VE, ¢%(X, ) .

In fact, if it is proved, we have from the assumptions of the theorem,
d;c)=D(0; ),
which together with (2.3) implies (2.4). To this end, notice that

(el D) —ct, 0= {{ ', e)ae]’
and |
of, T)—c(x, 0)=¢(x, 0)(r—0)+ | (+—E)e" x, )¢ .
Using Schwarz’s inequality and Fubini’s theorem, we have
E, (e(X, ©)—e(X, 0))/(s—0y'=E, || (X, e)ae] (e -0y

<FE, g: (X, £)d&/(c—0)

S E, ¢*(X, &)dé/(z—0) .

Since E, ¢*(X, &) is continuous in ¢, it follows that

Iim E, {o(X, ©)—e(X, 0)}/(r—6)'<E, (X, 0) .
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On the other hand, it follows from Fatou’s lemma that
g_% E, {(X, t)—¢(X, 0)}}/(c—0)*=E, (X, 9) .
Thus
E; {¢(X, t)—c(X, 0)}’=E, ¢XX, 8)(r —0)*+o((r—06)) .
Therefore from Lemma 2.2, we have
E, (X, 6)=0, for all 9€@.

From this fact and Fubini’s theorem, we obtain
E, {¢(X, ) — (X, 0)} = S (r—8&)E, (X, &)d¢ .

Since E, ¢”’(X, &) is continuous in &, we have
E, {c(X, 7)—c(X, 0)} = E, ¢"(X, 0)(r—0)"/2+0((z—0)") .

From these facts and the definitions of D(f;c) and d(4;c), (2.6) and
(2.7) are easily deduced. Thus the theorem is proved.

Remarks. (i) By Fatou’s lemma, it is easy to see that in all cases
(2.8) s(0)=1(9) ,

where I(6) is the Fisher information, that is,
10)=| £, 0)/f @, O)dp .

Pitman [6] called the family of probability measures smooth at 4, if
s%(#) is finite and equal to I(#), and gave the following simple conditions
for the smoothness. For all 4,z €0,

(P-1) S F'(@, 0)dp=0, =;—0§f(x, 8)dp,

®2) L (Vi D Vi@ Odu=| L V7@ ) V@ Dip,
T T
(P-3) I(6) is a continuous function of 4.
If in particular the supports of f(z, 6), 6 € ® are independent of 4, (P-3)
is sufficient to ensure the smoothness. Indeed, by Schwarz’s inequality

and Fubini’s theorem, we find

(2.9) 19(P, P)=4 | {{ V7@ ©de} dp=(c—0) | 1e)ae

(Ibragimov and Khas'minskii [2]), which implies

s(0)<1(6) ,
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and which in turn together with (2.8) implies
s¥(6)=1(9) .

An example in which D(4; ¢)<+vn s(8) but D(0; ¢)=vnI(d) will be given
in the next section.
(ii) Note that Jensen’s inequality implies that the function

cx, 0)=—log f.(x, 6)

is contrastive. It is easy to see that under the conditions of Theorem
2.1 and Pitman’s conditions, the discrimination rate of ¢, attains the
upper bound.

3. Discrimination rates of L-unbiased estimators

The results of the preceding section make it possible to investigate
the performance of L-unbiased estimators. Suppose that 3(X) is L-
unbiased with respect to a given loss function W(4, -). Let {Q,; 6 € 8}
be the family of probability measures induced by 4(X) and let g(-, 6),
0 €0 be the densities of @, 6 € ® with respect to a o-field measure v.
We shall denote the sensitivity of {Q,; # €6} at 8 by s(4; 3), that is,

s(0; 3)=21lim p(Q., Q)= —0]
=21im || (&, 9 —Va@, Vs | f1e a1

After the notation of D(f; 3, W), we shall write d(6; 3, W) instead of
d(f; c¢) when c(x, 6)=W(d, 3(x)). Then we have the following theorem.

THEOREM 3.1. If both E, W'(zr, 8(X)) and E, W"(z, 3(X)) are con-
tinuous in 0 and t, then for all 6 €8,

D(0; 8, W)=s(0; 3) =+ s(6) .
PrOOF. A similar argument to the proof of Lemma 2.1 leads to
d(6; 9, W)<s(8; 9) .
From the inequality
p(Q., Q) =p(P", P}
(Pitman [6], p. 8), we have
d(0; 3, W)<s(0; 0)=+v s(6) .

The desired result follows from the proof of Theorem 2.1 and the as-
sumptions of the theorem.
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We investigate the attainability of the upper bound of the discrimi-
nation rate. Let {P,; 6 € 8} be the exponential family with the natural
parameter, i.e.,

f(@, 0)=exp {08(x)+w(0)+ (@)} ,
and put
Wy, o(x))=—03(x)—w(6) .
Then the statistic

>3 8(X)

i=1

oK)=~

n

is L-unbiased with respect to W,. Indeed, it follows from the equality
W0, 3,0) == —log £, 0)+ 3} bz

and Jensen’s inequality. From the properties of the exponential family
(Lehmann [4], p. 53), we can see that the conditions of Theorem 3.1
and Pitman’s condition (P-3) are satisfied. Hence we have

D(0; 8oy W)=+ —1n0"(0)

and

V1 s(0)=vnI(0) =v —nao"(0) .
Furthermore, notice that
E, 0(X)=—o'(9) ,
which implies that §,(X) is L-unbiased with respect to
W6, 0)={3+'(0)}" .
Using the following Corollary 3.1, we find
D(6; 8, W)= —0"(0) ¥/ Var, 3(X) =+ —n0o"(0) .

Thus both D(8; 8,, W;) and D(6; 3,, W;) attain the upper bound of the
discrimination rate.

Since the larger discrimination rate 3(X) has, the more sensitive
it is to the wrong values of y(-) which come near to the correct one,
we can use the discrimination rate as an index of the performance of
3(X).

DEFINITION 3.1. We shall define the efficiency of an L-unbiased
estimator 6(X) with respect to W as
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e0;8, W)=D(0; 3, W)[vVn s(6) ,
the ratio of its discrimination rate to the maximum possible.

In the following, we study L-unbiased estimators with respect to
the loss functions of special forms. To begin with, we treat the quad-
ratic loss function

W@, 3)={3—r()}*,
where y() is differentiable. Then we have the following result.

COROLLARY 3.1. Suppose that 8(X) is L-unbiased with respect to
W,, and that E, 3(X) takes one of the possible values of the function r(-).
If E,8%X) 1s continuous in 0, then we have

D(9; 3, W)=|r'(O)|[VE, W0, (X)) =¥ ns(0), forall 6€6.
PrOOF. From the assumptions of the corollary, we have
E, 3(X)=7(0)
(Lehmann [4], p. 12). Thus we find
E, {Wi(z, 3(X))— W6, 6(X))} = {r(r)—7(0)}*
and

E, {Wi(z, 8(X))— W0, 3(X))}*
=4{r(x)—7(0)}* E, Wi(0, (X)) + {r(r)—r(6)}* .

Using these equalities, we have

. _ 2|r(x)—7(0)|
4 030 W)= B, Wi, 50 T2 E. Wite, 3N+ OOV

hence

_ L 2[7'(6)|
d@;a, W’n)—l_}%l_ [2E, Wi(0,3(X))+2 E, Wiz, 3(X))]"* ~

From the continuity of E,4(X) and E,d*(X) in 6 and a similar argu-
ment to the proof of Theorem 2.1, we have the desired result.

If the family {P,; 6 € 8} under consideration satisfies Pitman’s con-
ditions, then the Cramér-Rao inequality follows from Corollary 3.1. But
see the following example.

Example 3.1. Let X, X;,---, X, be independent random variables
with density function
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flz, 0)=I{zz0}exp{—(z—0)}, —oo<f<oo.

We estimate 6 with the loss Wy(0, 3)=(3—0)’. We can easily see that
3(X)=Xp—1/n

is L-unbiased with respect to W;. From Corollary 3.1, we have
D(@; 3, W)=n .

On the other hand, we have (Pitman [6], p. 12)

s¥(0)=o0 and I6)=1.
Thus
D@;3, W)svns@®) but D@;3 W)=+vnl(@),

and '

e(d; 8, W)=0.

From Lemma 2.1, the following generalized form of the Cramér-
Rao inequality, which is due to Ibragimov and Khas’minskii [2], is easily
obtained.

COROLLARY 3.2. Let 3(X) be an estimator of 6. We assume that
the demsity functions of the family have the supports which are inde-
pendent of 6, and that y,(0)=E, 3(X) is continuous in 6. Then we have

(B, {2(X) —0)*-+1im E, (2(X0)—7}1)/2
2 lim (7,(e)— .01 —0)1 [ n T || 1@)de/(=—0) | +b0)
where b (0)=r.(0)—0.

ProOF. It is easy to see that c(x, 6) = {3(x)—7.(6)}* is a contrastive
function. From Lemma 2.1 and (2.9),

4{rux)— 10} =[2 B, {3(X)— 6} +2 E. {3(X) —7}*—2b3(6) — 2ba(7)
+ (1) — OV [0 —0) | e ] -
Hence we have
4lim {r.(z) = 7(0)}/(=—0)’
<[2 E, {3(X)—6}"+2 lim E. {3(X)—r}*—4b(6)]

x [n Tim S I(e)de/(r—o)] :
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which implies the corollary.
Next we treat the quadratic loss function of the form
Wy(0, 9)=(3—0)/6*,  6€6=(0, ).

COROLLARY 8.8. Suppose that 3(X) is L-unbiased with respect to
W,, and that E, 3(X), i=1, 2, 8, 4 are continuous in 0. Then

D(0; 3, Wy)=[1—E, Wy(0, 3(X))1/VE, 3} X)W(0, 3(X))
<Vnus@), foralbco.

PROOF. We can easily see that the conditions of Theorem 3.1 are
satisfied. Thus we have E, Wy(6, (X))=0, that is,

E, 3%(X)/0°=E, o(X)/0 .
Using this equality, we find
E, Wi'(0, (X))=2E, 8(X)/0°=2[1—E, Wy(8, 3(X))]/6*
and
E, W0, 3(X))=4 E, 3(X){3(X)—0}*/6°=4 E, 3 X)Wy0, 3(X))/6" .
Thus the corollary follows from (2.7) and Theorem 3.1.

Ezample 8.2. Let X, X;,-+-, X, be a sample from the normal dis-
tribution N(g, ") with known p. Then each of the estimators of o2,

1 n 1 n —
=1 _ SU(X,— ) =_1 —X)
WO=m &= aX) = B (X X)
and
(X)) =5 (X~ p)’

is L-unbiased with respect to the loss function
Wya*, 3) =(3—3a*)/(a*)* .
The sensitivity of the family is given by
s()=(+"2 ).
We obtain
D(a*; 01, Wo)=+"n s(a)W1—4[(n+6) ; E;: Wi(d*, 0(X))=2/(n+2),
D(d*; 35, W)=+ m s(a")YI—(n+ 1)/’ +bn); Ep. Way(d?, 3,(X))=2/(n+1)
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and
D(o*; 3, W)=+ n s(*)¥3](Tn) ; E.» Wy(d", 3(X))=2/3 .
Thus when =2,
E;: Wi(a', 0( X)) SEp Wi(o®, 0(X)) SE,» Wi(o', 04(X))
and
D(d*; 8y, Wy)=D(a*; 35, W3) = D(d*; 35, Wy) .

The efficiency of each estimator is tabulated below. The estimators
0(X) and 8,(X) are asymptotically efficient in the sense of discrimina-
tion rate.

Table 3.1. The efficiencies of 61, 02, 03, 04 and ds

e(a?; 81, W2)  e(o?; 62, W2)  e(a?; 0s, W)  e(o?; 64, Ws)  e(a?; 85, Ws)

B

1 0.6546 0.0000 0.6546

2 0.7071 0.4629 0.4629

3 0.7453 0.5773 0.3779

4 0.7745 0.6454 0.3273 0.0000

5 0.7977 0.6928 0.2927 0.7071 0.0000
6 0.8164 0.7282 0.2672 0.8164 0.6454
7 0.8320 0.7559 0.2474 0.8660 0.7559
8 0.8451 0.7783 0.2314 0.8944 0.8100
9 0.8563 0.7968 0.2182 0.9128 0.8432
10 0.8660 0.8124 0.2070 0.9258 0.8660
o 1.0000 1.0000 0.0000 1.0000 1.0000

Now we investigate the case where a loss function is not of a
quadratic form. Consider the following loss function.

W0, 3)=3/0+0/3, 0e8=(0, o).

COROLLARY 3.4. Suppose that 3(X) is L-umbiased with respect to
W;, and that E, 0Y(X), 1==+1, +2 are continuous in 6. Then

D(9; 3, Wy)=E, Wy(0, 3(X))/0VE, W0, 6(X))—4
=Vns@), foralb6echH.

Proor. Since the proof is similar to that of Corollary 3.3, we
omit it.

Ezxample 3.2 (continued). Now the estimators of o,
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_ 1 (X e
54(X)—7m§ (X; #)

and
1 n

S (X—X)

WX)= V(n—1)(n—3) i=1

are L-unbiased with respect to W,. We obtain
D(o*; 3, Wo)=v n s(a®)¥1I—1](n—3) ;
E;: Wie*, 0(X))=2v1+2/(n—2)

and

D(d*; 85, W)=+ n s(6)vV1I—(2n—5)/(n*—4n) ;
E.» Wi(d®, 3(X))=2vI+2[(n—3).
Thus when n=5,
Ex Wi(d®, 3( X)) < Ep Wi(o, 35(X))
and
D(d*; 3,, W) 2 D(d*; 35, W) .

The efficiency of each estimator is tabulated in Table 8.1. Both 3,(X)
and 38,X) are asymptotically efficient in the sense of diserimination
rate.

4. Sufficient statistics and discrimination rates

Suppose that a statistic T=T(X) is sufficient for {P,; 0 €8}. We
shall write the conditional expectation E {-|T} because T is sufficient.

Motivated by the Rao-Blackwell theorem, the following problem
arises. Let d(X) be L-unbiased with respect to W(-, :). Then what
form of loss function W does permit the construction of an L-unbiased
estimator 3(T) which depends only on 7 and is better than 3(X) in
the sense of discrimination rate, that is,

D@; 38, W)=D(6;3, W)?

Klebanov [3] has treated the similar problem to ours in terms of the
risk function. Following the RB-condition of [3], we define the RBd-
condition.

DEFINITION 4.1. We shall say that a loss function W(., -) satisfies
the RBd-condition if for any family of distributions {P,; 6 € 8} having
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a sufficient statistic 7' for § € @ and any L-unbiased estimator 3(X) of
the parametric function r(6), @ € 6, there exists an L-unbiased estimator

3 of y which depends only on T and satisfies the inequality
d(0; 3, W)<d(8;3, W) .

Remarks. (i) The RB-condition is defined by substituting the in-
equality d(6; 8, W)<d(9; 3, W) for the inequality E, W(6, 3(X))=E, W(4,
a(T)). 3

(ii) Under some continuity conditions on 4 and 48, the inequality
d(0; 3, W)<d(0; 3, W) is reduced to the inequality D(4; 3, W)<D(9; 3,
W) (see the proof of Theorem 2.1).

We restrict our consideration to the case where the loss function
is of the form

4.1 W, 3)=¢(3—7(0)) ,

where ¢ is a twice continuously differentiable non-negative strictly
convex function such that ¢(0)=0, and 7 is a continuously differenti-
able function. Then we have the following result, which is similar to
that of Klebanov with respect to the RB-condition.

THEOREM 4.1. In order that a loss function of the form (4.1) satis-
fies the RBd-condition, it is mecessary and sufficient that either

4.2) &(x)=A[exp (ax)—ax—1]
or
(4.3) #(r)=ax’,

where A, a and a are constants.

PRrROOF. Since the proof of necessity is carried out similarly to
that of Klebanov [3], we proceed to the proof of sufficiency. If y(8)=
¢ (constant) for all 6 €6, then every estimator of y is L-unbiased and
its discrimination rate is zero. So we have only to consider the case
where y(6)#c for all # € #. First we investigate the loss function given
by (4.2), that is,

W(0, 3)=Alexp {a(d—7(6))} —a(3—7(6))—1] .

Put w(y(0), 3)=W(0, d) and denote the derivative of w(y(f), 3) with re-
spect to y by w'(7(6), 8). Let 3(X) be L-unbiased. Since E,w"*((, 3(X))
is continuous in ¢, it follows from Lemma 2.2 that .

E, w'(y(0), 8(X))=Aa[—exp {—ay(0)} E, exp {ed(X)} +1]=0,
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that is,
E, exp {2d(X)} =exp {ar(0)} , for all 4eb.
Using this equality, we can easily verify that
E, {W(z, 3(X))—W(0, 3(X))} =Ad*{r(z) —r(6)}} {1+ 0(1)} /2
and

E, {(W(z, 3(X))—W(0, 3(X))}*
=A% {y(v)—7(0)}[exp { —2ar(0)} E, exp {203(X)} —1+0(1)] .
From the definition of d(d4; 3, W),

R |ar'(6)] exp {ar(0)}
U 0 W) = e Bad(X))/2+ E. exp {203(X)}2—oxp Zar @)

Set

5(T)=% log E {exp (e3(X))|T} -

From the equality
E, exp {a3(T)} = E, E {exp (23(X))| T} =exp {ar(6)}
and the inequality
exp (ax)—ax =1,

we can easily prove that 3(T) is L-unbiased. An argument similar to
the above yields

d(0; 3, W)=lim lar'(6)] exp {ar(6)} _
=~ [E, exp {2ad(T)}/2+E. exp {220(T)}/2—exp {2ar(H)}]"*

From Jensen’s inequality,

E, exp {2a3(T)} =E, {E {exp (a3(X))|T}}*
<E, E {{exp (23(X))}*|T} =E, exp {2a3(X)} .

Hence
d(g; 8, W)<d(9; 3, W) .

Thus the loss function given by (4.2) satisfies the RBd-condition. We
now proceed to the proof for the loss function of the form (4.3), that is,

W, 3)=a{3—7(0)}*.

Let 8(X) be L-unbiased. Using an argument similar to the previous
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case, we have
E, 0(X)=7(9) .
Put
3(T)=E {3(X)|T} .

Obviously it is L-unbiased. By an argument similar to the proof of
Corollary 3.1, we can prove that

d(0; 3, W)=1im 2|7'(6)|/[2 E, 3*(X)+2 E. 8*(X)—47%(9)]"*
and r
(0; 3, W)=lm 2|7(0)|/[2 E, (T)+2E. 3(T)—47%0)]'* .
Therefore using Jensten’s inequality, we have
d(6; 3, W)<d(9;3, W) .
Thus we complete the proof.

Now we examine the property of the diserimination rate of a con-
trastive function when a sufficient statistic exists. Notice that if the
function ¢(X, #) is contrastive, so is the function &(T, 6)=E {¢(X, 6)|T}.
Then we prove the following theorem.

THEOREM 4.2. Suppose that both E, (X, 7) and E,¢"(X, ) are con-
tinuous in 0 and z. If E,{E {c¢'(X, 0)|T}}* is continuous in 6, then for
all 6 €0,

D(6; c)=D(0; )=+ s(0) .
Before proceeding to the proof, we establish the following lemma.
LEMMA 4.1. Suppose that E,c* (X, 0) is finite for all 0€0. If
1151 E, {c(X, 7)—c(X, 0)}}/(r—0)'=E, (X, 6) ,
then
1151 E, {&(T, ©)—¢(T, 0)}/(r—0)Y=E, {E {¢'(X, 6)|T}}?
and
115; E {&T, z)—¢«T, 0)}/(—0)=E,E {¢'(X, 6)|T}=0.
Proor. Using Jensen’s inequality, we find

Eo|{e(X, ) —e(X, 0)}/(z —0)— (X, O)[*
2B, |{«T, -)—«(T, 0)}/( —0)—E {'(X, )| T}
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Thus from (2.5),
lim E, [{&(T, =)—&T, 0)}/(r—0)—E {¢'(X, 6)|T}|'=0 .
Following the proof of Lemma 2.2, we can easily see the lemma.

PROOF OF THEOREM 4.2. From Lemma 2.1 and Jensen’s inequality,
the following inequalities hold :

E {e(X, 7)—c(X, 0)} +E. {¢(X, 0)—c(X, 1)}
=E, {&(T, ) —&(T, 6)} +E. {&(T, 6)—&(T, 7)}
=[E AT, 7)—&T, 0)}'/2+E {&(T, 0)—&(T, 7)}*/2]"*[4np*(P., P,)]"*
=[E, {e(X, 7)—e(X, 0)}!/2+E. {c(X, 0)—e(X, 1)}/ 2] [4np*(P,, P,)]"* .

Thus from (2.2), we have
d(0; c)=d(0; )=vm s(0) .

Since it has already proved that d(8; c)=D(f; c¢) (see the proof of The-
orem 2.1), we have only to prove that d(6;e)=D(6;¢). This is easy to
see. Indeed, from Lemma 4.1 and the proof of Theorem 2.1, we ob-
tain at once that

a1 E, (X, 0)/2+E. ¢(X, 7)/2
=1
U =l o (X &) T2, (B (X, OITIY 21"

and

D(6; ¢)=E, "(X, 0)|vE,{E {¢(X, 6)|T}}?,
and therefore from assumptions, we have
d(6;e)=D(0;¢) ,
as was to be proved.

Remark. Let 8(X) be L-unbiased with respect to the loss function
W0, 8)={6—r(6)}*. Applying Theorem 4.2 to the contrastive functions
c(X, 0)={0(X)—7(0)}* and &T, 0)=E {{8(X)—7(6)}*|T}, we can prove
that

D(@; 8, W)<D(8; 3, W),
where 3(T)=E {3(X)|T}.
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