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Summary

Some criteria based on K-L information number and W-divergence
are presented for a certain type of uniform approximate equivalence
of two probability distributions. As applications, some necessary and
sufficient conditions are also given for the corresponding uniform asymp-
totic equivalence of two random sequences.

1. Introduction

Measuring the discrepancy between two probability distributions is
of fundamental importance in many statistical problems. Lots of meas-
ures of discrepancy have been presented and their properties have been
investigated by many authors under various situations. But, so far as
the present author knows, almost such works are mainly concerned
with limiting or asymptotic cases. From practical point of views, how-
ever, it seems to be very important to evaluate the diserepancy not
in limiting or asymptotic manners but in approximate ones by using
inequalities available in small sample cases. Such approach also has
theoretical merits of improving the asymptotic results so far obtained.
Such being the case the present article is designed to give error eval-
uations relating to some important measures of discrepancy.

Let X and Y be two random variables defined on a measurable
space (R, B), where R is any abstract space and B is a o-field of sub-
sets of R. Let us designate by P* and P? the corresponding prob-
ability distributions of X and Y, respectively. Moreover, let A be a
measurable set belonging to B and let 8*=4*(X, Y; A) be a measure of
discrepancy on the set A between the two distributions.

DEFINITION 1.1. Two random variables X and Y are said to be
uniformly ¢-equivalent with respect to 8* im the sense of type (B), and
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are denoted as
(1.1) XLy, (B

if for any ¢=0 there exists a non-negative monotone function of e,
#(e; 0%), such that ¢(e; 8*)—0 as ¢e—0 and

(1.2) DX, Y; B)Egu% |P*(E)—PY*(E)|=¢(e; 0%) ,
whenever 4*=<e.

It should be remarked that the above notion is an extension of S.
Ikeda’s definition of type (B), asymptotic equivalence of probability
distributions (cf. [1], [2]). We have, of course, several types of ¢-
equivalence by considering subclasses of B in parallel with his notion.
For example, let R be Euclidean space and taking the class M consist-
ing of all infinite intervals which are right-opened, then we have other
type of approximation between two random variables, which may be
called ¢-equivalence in the sense of type (M),.

Now, suppose that both X and Y are absolutely continuous with
respect to a o-finite measure p over (R, B). Then, X and Y have the
gpdf’s () f and g, respectively. Under these set-up let us take some
familiar measures of discrepancy between the two probability distri-
butions ;

(1.3) KX, Y; R\=1—p(X,Y; R)
with
(1.4) oX, Vi B=| vadu,
(1.5) VX, Y; R)sSR \f—gldg ,
(1.6) IX,Y; R)ESR Fn(flg)dg ,
and

o ()
(1.7) WX YiR)=|_ (g 1 gdu,

which is sometimes called W-divergence or y’-divergence (cf. [4], [8]).
It is known that the following inequalities hold among these quantities:

(1.8) 0=p(X,Y; R)=1,

(1.9 1-p(X,Y; R)SDX,Y; B):&’zY?_R_)g VI—pi(X, Y R)
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IX,Y; R) 1 .
§\/—2———§\/§' In{1+W(X,Y; R)},

which will be considered under more general situation in next section.
Then, as is well-known, we can see that

(1.10) DX,Y; B)=0 iff o(X,Y; R)=1,
and

(1.11) DX, Y;B)=0 if I(X,Y; R)=0,

or

(1.12) DX,Y;B)=0 if W(X,Y; R)=0.

Judging from the above, it seems that the affinity p(X, Y; R) is better
than the Kullback-Leibler information number I(X, Y; R) as a criterion
for type (B). equivalence problem of X and Y. This is certainly true
in general discussion. However, I(X, Y; R) is sometimes manageable
in practical calculations and has the physical meaning of the negative
entropy of X with respect to Y. As for W(X,Y; R), it is apparently
related to K. Pearson’s y’-statistic. Therefore, seeking other necessary
conditions for D(X,Y; B)=0 based on the two quantities, if exists, is
strongly desired from both theoretical and practical reasons.
Concerning this problem, Pinsker [7] gave the following inequality :

(1.13) PX({x; lln%lgs, weRDéH—e VX, Y;R),

&

for any given ¢>0. This result suggests us that vanishing of K-L
information number or its modified quantity is also useful to the neces-
sary condition, if there exists a certain measurable set on which al-
most all mass of X and Y distributes. Similar guess arises to W-
divergence.

In the following section the above problem is investigated in terms
of uniform ¢-equivalence in the sense of type (B),. In Section 3, as
applications, we give some necessary and sufficient conditions for type
(B). asymptotic equivalence of two random sequences.

2. Criteria for type (B), ¢-equivalence

Let, as before, X and Y be two random variables defined on an
abstract measurable space (R, B), where R is any abstract space and
B is a o-field of subsets of R. Let px be a o-finite measure defined
over the measurable space and A a measurable set in B. Denote the
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corresponding probability distributions of X and Y by P¥ and PY, re-
spectively. Let, further, f*>0 and g*>0 be the respective Radon-
Nikodym derivatives of P*¥ and PY with respect to ¢ over the set A.
Then, for every measurable set E belonging to the sub-s-field of B
generated by the set A, it can be represented as

PX(E')=SE f*dp  and P”(E):SE g*dp .

The set A is not necessarily identical with the whole space R, in which
case X and Y may or may not be dominated by g outside the set A.
Throughout this section, the sets A, should always be considered to
be the subsets of A. As the set A, one may take, for example, the
common domain of the supports of X and Y, if R is the k-dimensional
Euclidean space and each supports of X and Y is a k-dimensional right-
opened interval. Such cases often appear in measuring discrepancies
among probability distributions. Another example is associated with
the approximate joint normality of %k sample quantiles from the uni-
form distribution U(0, 1), where we can take as A a k-dimensional set
{0 ; x(k):(xnlr° ) xnk): 0<xnl< te <xnk<1 and 0<n, < - <m,}.

Now as in [3], let us consider the quantities corresponding to (1.3)-
1.7) as aX(X,Y; A);

2.1) K*X,Y; A)=1—p%X, Y; A)
with

2:2) X, Y A= (et
(2.3) VA, Vi A)=| 1F*—g*ids
2.4) X, Y5 A=\ £*In(Frjgap
and

(2.5) WHX, Y; A)=| (F*g*—1g*dn .

4In the case where the set A is taken to be the whole space R, we
shall not asterisk the above quantities as in (1.3)-(1.7).
Among these measures of discrepancy the following result is useful :

LEMMA 2.1. (i) If for any given e [0<¢e,<83—2v 2] there exists
a measurable set A, € B satisfying

(2.6) [0%(X, Y; A )P=1—¢,
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or equivalently

2.6Y K*X,Y; A)<1-vIe,

then it holds that

@.7) X2Y, (B,

where

(2.8) dr=¢i(e1; K¥)<2¢/e;+¢; .
(ii) If for any given e, [0=¢,=<1/3]

(2.9) D(X,Y; B)se; ,

then there exists a measurable set A, € B such that
(2.10) p*X,Y; A )=1-3e; .
PrROOF. (i) Assume that (2.6) is satisfied, then
min (P¥(4,), P*(4,))2 PX(A.)- P*(A)Z[p*(X, Y; A)P=1—e, ,
which implies
P¥(A,)z1—¢, and PY(A,)z1—¢ .
Then, we can evaluate as
D(X,Y; B)< sup |P*(F)—P*(F)|+ sup |P*G)—P*(G)|
FcA GcR—Ae,
SVHX, Y3 A)+e
=[{P*(A.)+P"(A)}—4(o* (X, Y; A,))T"+ e
SV41—-(o*(X, Y; A))] +6,=2vVe +¢ .

(ii) Under the assumptions of the lemma it is obvious that for
an arbitrary ¢; (0=<e,<¢;<1/2) we can take a measurable set A, ¢ B
such that P*(4,)=1—e¢;. Moreover, from (2.9) it follows that P*(4,)
gPX(A,z)—ezgl—(eﬁ-e;). If ¢; is so chosen that e;=e;, then PY(A,)
=1—2¢,. Interchanging X and Y we have the dual result P*(4,)=
1—2¢,. Thus, we get

(2.11) min (P*(4,,)), P*(A.))Z1—2¢, .
Next, let us put B={x; f*(x)=g*(x), v€ A} and C=A, —B, then

VA, Y5 A)= (F*—gdu+| (@* -0
<2 sup |[P*(E)—P*(B)|=2D(X, ¥; B)2e: .
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Thus, we have
PHX, Y5 A)Z L PTA)+PY(A) VX, Y; A,)
=1—2¢,—e,=1—3¢,,
which completes the proof of the lemma.

On the way of the proof to the lemma we have obtained the fol-
lowing result which is of independent interest and will be used later.

COROLLARY 2.1. (i) If for any given & [0<e,<3—2+ 2 =0.17157
--] there exist a measurable set A, (e B) and a mon-negative small
number p=x(e;) such that

(2.12) min (P*(4.), P*(A.))=1—¢;,

and that

(2.13) VXX, Y; A)Sn(e) =2V,

then

(2.14) X2y, (B,

where

(2.15) Gr=0y(es; V¥)Snu(es) tes=24/ 65+ ey«
(ii) If for any given ¢, [0=5¢,<0.5]

(2.16) DX,Y; B)<e,,

then there exists a non-empty measurable set A, € B such that
(2.17) VXX, Y; A,)<2e, .

The following lemma plays an important role in the subsequent
discussions.

LEMMA 2.2. Let ¢ be any given mon-negative number and define
the set

(2.18) B,:{w; lln i:((:)) ‘ge, xeAcR} .

Then, 1t holds that

(2.19) min {P*(B,), P*(B,)} =2min {P*(4), P*(A)} —c(l—)V*(X, Y; A),

where c(e)=min (e, 1).
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PrROOF. Let us define the set
_ (. *(x) g*(x) _
(2.20 S,-{x,max(‘—f—— | l <e, x€ ACR; ,
) 7 (z) ()
then

VX, V5 A)=| 1rr—gtldpz| S

[, (*—o")e|

Zo(e)[{P*(A)—P*(S)} +|P*(S)—P*(S)]] .

ze| | Frap+IPHS)-PT(S)]

We have also the dual inequality :
VX, Y; A)=c(e) [{PY(A)—P*(S)} +|P*(S)—P*(S)I] .

Then,
VXX, Y; A)zc(e)[min (P*(4), P*(4))
— {max (P*(S.), P¥(S.))—|P*(S)—P*(S)]
=c(e)[min (P*(A), P¥(A))—min (P*(S,), P*(S))] ,
from which

(2.21) min (PX(S.), P¥(S.))=min {P*(A4), P*(4)} —%V*(X, Y; A).

Incidentally, since |In ¢|<max (|t—1|, |1/t—1]) (¢>0), then S,EB, and
hence we immediately obtain the desired inequality (2.19).

Remark 2.1. The lemma becomes a generalization to Pinsker’s re-
sult (1.13). In fact, taking A=R we have an improved inequality cor-
responding to (1.13).

Now we are in a position to state the following

THEOREM 2.1. (i) If for amy given & [0Se<1—v2(V 2 —1)=
0.35640- - -] there ewist a measurable set A, € B and a non-negative small
number n,=ny(e;s) such that

(2.22) PX(A)z1l—¢s,
and
(2.23) IME, Y3 Alsn(e)s(—e)n 5020

stmultaneously, then it holds that
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$3

(2.24) X~Y, (B,

with

(2.25) $y=d(es; I*)=¢i(ef; I*)S2Vef +ef
where

(2.26) ef=1—(1—e) exp{—n/(1—ej)} .

(i) If for any given & [0=<¢<0.25]
(2’27) -D(Xy Y; B)éss ’

then there exist a constant ¢ and a measurable set A, € B such that the
set defined by

228  By=lui|n gT*((;“))_ <&,

0<a<l—In(0.5—ep)/n & and « € A,GCR} ,

satisfies the conditions

(2.29) PX(B;)z1—¢,, ,

and

(2.30) —&=I*X, Y; B;)=min {¢;, ¢; exp (¢5/2)} ,
stmultaneously.

Proor. (i) Since f */P*(A,) is a generalized probability density
function with respect to the measure p over the set A,, then we can
apply the Jensen inequality to get

I*(X,Y; Az —2P*(A,)[—In P¥(4,)+In pX(X, Y; A,)] .
Using the conditions (2.22) and (2.23) we obtain

@31)  [MX Y5 A Fz(—epexp [~ 2D =1 er,

—&5

from which it is seen that 0<e}<3—2v2 for 0<e<1—V2(y/2 —1).
Thus, by virtue of (i) in Lemma 2.1 we get (2.24) with (2.25).
(i) In view of Lemma 2.2 and Corollary 2.1 (ii), we have

(2.32) PX(B:)zPX(A)-L VXX, Y; A,)
€s

=1—-2¢(l+e;%)=1—¢,, >0,
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where we have used the same evaluations on P*(4,) and V*(X,Y; A,)
as those derived in (2.11) and (2.17), respectively. As for the R.H.S.
inequality in (2.30) we can easily get

"X, Y Bs(y £

In fj_ldpgsgP‘Y(st)ée'é )
g*
or we can get with the aid of the inequality ¥ ¢ Int<t—1 (¢=1) as

* . Pa ¥ K (£ _ ok
DX Y BYS g o) VT (P =g
=exp () D(X, Y; B)<¢;exp (¢5/2) .
On the contrary, using the inequalities ¢ |In¢|<|t—1|<(E+1)|Int|/2
(t>0) or a less precise inequality Int>1—1/t (t>0), we have
X, Y; Bz, (F*—g0dpz DX, Y: Bz«

which completes the proof of the theorem.

Remark 2.2. From Lemma 2.2 P¥(B:)zl—e, automatically holds
under the same condition of the part (ii) in the above theorem.

For W*(X,Y; ) we have the following

THEOREM 2.2. (i) If for any given e [0<e,<3—2v 2] there exist
a measurable set A, (€ B) and a mon-negative small number n,=xies)
such that

(2.33) P¥*(A)z1l—¢,

and

(2.34) WHX, Y; A )=ne)=4e
simultaneously, then it holds that

(2.35) X2Y (B,
where

(2.36) pi=gu(es; W*) <2/ e+ ¢ .

(i) If for amy given e [0=<¢,<0.5]
(2.37) DX,Y; B <¢e,

then there exist a comstant B8 and a measurable set A, € B such that the
set defined by
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(2.38) B.=a;

JXx)
-]«

~1<p<1-In(05—e)/n ey, 7€ A,CR|

satisfies the conditions

(2.39) PY(B)z1—2¢,—2¢)*>0,
and
(2.40) WxX,Y; Bfg)gmin {e2, 2841} .

PRrROOF. (i) Since

%
VR Vs A)=( 1fr—gdp=|, [ L]
RB as

3 2 1/2
A %k . kK,
é[g,a,a (g* 1) g*du SA,sg d,u]
—[W*X, Y; A)-PT(A)I",
we get from the condition (2.34)
<Vale)PTA) <2V .

Thus, noticing the condition (2.83) and Corollary 2.1 we get the desired
result (2.85) with (2.36).
(i) By Lemma 2.2 and Corollary 2.1 (ii), we have

PY(BfQ)gPY(A,Q)—e;ﬁV*(X, Y; A,g)gl—ng—Ze;‘f’El—ewﬂ>0 .
In respect to (2.40) it is clear that
*(X. Y: B*)= f* 2>o=d 28 DY ( BB 28
WX, Y3 BY)=\,, (Lo-1) srdus et Pr By,
and that

WHX, Vi B)=

*
L1 —grldus ety X, ¥ By s2et

which completes the proof of the theorem.

Now we shall state a relation between I*(X,Y; ) and W¥*X,7Y; -)
in the following

THEOREM 2.3. Assume that for any given e, [0=e,<1] there exists
a measurable set A, (€ B) such that

(2.41) min (P¥(A,,), P*(A, ) =1—¢y -
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Then, (i) it holds that

(2.42) IMX,Y; A

‘11

)<In [1+ : 1

—€&n

WHX, V5 Ay)+eud | -

(i) In addition to (2.41), if there exist a mnom-negative number ey

=eu(en) [0Sen<en<l] and a measurable set B, ,C A, such that
(2.43) min (P*(B,,), P*(B.,)21—eu ,

then it holds that

(2.44) XX, Y; B,)z+ (1—_3.612>W*(X Y; B, )—¢

and

(2.45) I*X,Y; B, )=t (1+——912>W*(X Y; B, )+ex -

PrROOF. (i) From the definition

WH(X, Y;A,J:SA; Y S Frap+|, gdn

A
11 11 ‘1

={. exp( IL) Hap—2PH 4, )+ PT(A,)

11

using Jensen’s inequality

246) zP*A)exp(| —l—~mn L dp)—2P7(4,)+PT(4,)

. P¥A,)  g*
Thus, from (2.41) and (2.46), we have
I*X,Y; A,)

SPHA,) In [+ (P4,

(WHX, Y5 A+l | -

)—P¥(A

11

JHWHX, V5 A, ]

—é&n

(i) Under the condition (2.41), we can easily find a measurable
set satisfying (2.43). For example, take the set of the form

‘12

(2.47) B —{w max[

] < €12y

O§€11§512<1, wEA CR} ]

‘11

then
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(2.48) min (P*(B, ), P*(B, ))=1—e; .

12 12

Incidentally, since

* * __ k)2 *__ k)
f*In —5;2(f*—g*)+ (fzgf ) _ (feg*g ) ,

(cf. [5], [6]), we have

a2 12
L e
6 SB * 1 g* 1) g*dy

ZPX(B,)~P(A,)+5(1—eu) WX, ¥ B.,)

12

g%(k%eu) WX, Y; B, ) — e

Conversely, the inequality

f*lnf <(f*—g¥)+ (f"‘—.qr*)2 (f*}:;:)s

’

implies that

IX, Y; B.)<PXA

12

1 .
)=P*(B.)+5 WX, Y; B,)

1 g* (f* )2 *
+= S “——1)g*dp
‘12 f* g*

S (L 5 eu) WHE, Vi B, ) +eu

Remark 2.3. 1f we define the quantity

2.49 X, 7 A= g
(' ) T( s Ly )—Ag* § 22

then W*(X,Y; A)=*%X,Y; A)—1. So we have other versions of the
uniform ¢-equivalence rewritten in terms of z*(X,Y; 4), which may
be sometimes tractable in practical calculations.

Remark 2.4. W*(X,Y; A) is closely related to the K. Pearson’s
chi-square statistic X? under a multinomial schemes. In this case the
basic measure space (R, B, p) is taken such that R is the set of all
non-negative integers, B is the o-field consisting of all subsets of R,
and g is the counting measure on R. Suppose that we have » inde-
pendent observations whose possible outcomes fall in either one of the
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k (fixed and =2) mutually exclusive cells C; (i=1, 2,--., k). Let n, be
the observed cell frequency in C; after » independent trials and let p,
(0<p;<1) be the probability that any one of the outcomes falls in C,,

for each 4. Then, it must be ﬁ n,=n (0=n;=<n) and ﬁ p;=1. Define
=1 i=1

the (k—1)-dimensional simplex as
A={(@ - 8)|220 (=1, 1), So=1] .

Further, let P*¥ and P* be two k-term probability distributions whose
respective discrete densities are given by

(myfn, mofn,- -+, mfn)  and  (py, Dayc v, D) -
Then both of them lie in the simplex A, and

WX, Y; A):SA <§—1>zg*d é("p/" 1)2 —_-%é (s mzp,)z

that is to say
(2.50) n-W*xX,Y; A)=X;,

which is K. Pearson’s y’-statistic. Rényi [8] called W(X, Y; R) the
divergence. Now, assume that p,’s and n,’s fulfill the conditions: for

ot [ <o

In that case, it should be noted that by the similar manner ob-
tained (2.44), (2.45) and (2.50) we have

any given ¢>0 max {

1sisk

2.51) (1—%5>X£—e§2n-1*(X, Y; BJ§<1+%5)X1§+5 .

Since ¢ is arbitrary and X2-5y%k—1) (the chi-square distribution with
k—1 degrees of freedom) as m— oo, then

(2.52) 2n-I*X,Y; B) > y(k—1), (n—o0).

Further, choosing ¢ so small that P*(B,)=1=P*(R), we can roughly
speak that

(2.53) on-I(X, Y; R)S(k—1), (n—oo).

This property is very often referred, but its simple derivations are
seldom stated in the standard text books.
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3. Applications to the type (B), uniform asymptotic equivalence

In this section some criteria will be given on the type (B), asymp-
totic equivalence of probability distributions with the help of the re-
sults obtained in the previous section. Notations in the present section
are almost the same as in the previous section: Let {X,} (s=1,2,---)
and {Y;} (s=1,2,:---) be two sequences of random variables defined on
an abstract measurable space (R,, B,), for each s. Then, according to
Ikeda [2], the two sequences are said to be asymptotically equivalent
n the sense of type (B), if

3.1) D(X,,Y,; B,)= sup |P*(E)— P¥s(E)|—0
EeB,

as s—oo, and is denoted by

3.2) X, ~7Y, (B)s, (8—00).

As before, we shall consider the case where both X, and Y, are ab-
solutely continuous with respect to a o-finite measure p, over a non-
empty sub-s-field of B, generated by a measurable set A, belonging to
the og-field B,, for each s. The set A, is not necessarily identical with
R,, in which case X, and Y, may or may not be dominated by p, out-
side the set A4,. Now the following results are straightforwardly ob-
tained. The statements (i)-(iv) below are the corresponding results
to Lemma 2.1, Corollary 2.1, Theorem 2.1 and Theorem 2.2, respectively,
and their proofs can be done by modifying slightly the corresponding
parts in the previous section by assuming e,—0 as s— co.

THEOREM 3.1. Each one of the following conditions (i)-(iv) are
necessary and sufficient for {X,} (s=1,2,-..) and {Y,} (s=1,2,---) to be
asymptotically equivalent in the sense of type (B),:

There exists a sequence of measurable sets {A, (€ B)} (s=1,2,--+)
such that

(1) p*X, Y,; A)—1,

(ii) P*(A)—1 and V*X,, Y,; A,)—0,

(ili) P*(4,)—1 and I*X,, Y,; A,)—0,

(iv) P*(A,)—1 and W*(X,, Y,; A,)—0,

as S— oo,

Remark 3.1. In the necessary parts of (iii) and (iv), we may take,
as the sets A,, the corresponding sets of the analogous form to those
in (2.28) and (2.38), respectively. In the sufficient parts of the theorem
we can take {R,} (s=1,2,--:) (whole spaces) as {4,} (s=1,2,--.) and
the reduced results are well known. But, it is not always possible for
us to do so in the necessary parts of (iii) and (iv). This is shown by
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the following counter example.

Example. Let {X,} (s=1,2,---) and {Y,} (s=1,2,---) be sequences
of random variables with the following respective densities, for each s.

_11—_1+8/"s“ for 0Sw<1-1/s,
(8.3) Fi@)=1 1/ge for 1-1/s<w<1,
0 otherwise,
and
_1_1T__e_1'_;s/i for 0=<x<1-1/s,
(3-4) 92)=1 4-nr for 1-1/s<x<1,
0 otherwise .

Then, it is seen that when a, >0

DX, Y,; B)=2V(X, Y R)=L( |fi—alde
2 2 Joon

l_e"ﬁl}—)O (s—o0),
sﬂ

L1

8

<=
2

sa+1 s

1 { 1 e~

where g is the Lebesgue measure over [0,1). On the other hand
X, Y R)=( finLd
(0,1 gs

=(1_ 1 >1n 1—1/s**! 1 In 1/s ,
s° +1 1 _e—aﬁls sa+l e—aﬁ

in which the first member of the last expression tends to zero as s— oo.
The second member can be evaluated as follows:

Sa1+1 In i{i: = sal+1 (—alns+sf)~sPt,

Hence, if 8>a+1, then s#~*'—> o0, and therefore
IX,,Y,; R)>, (s—x).

On the other hand, I(X,, Y, R)—0 (s—o0), provided that g<a+1.
However, this is not the case for the quantity

2
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e~ 1 )2 1 1 (1 - p)’
= —_ —_ e 8
( s sa+l 1_e—3F/s + 86—2:9 sa
which does not always vanish. Because, the first term of the above
expression tends to zero as s— oo, but even if f<a+1 the second term

1 1 b 2_ 1 esﬂ 2 s \2
se~u* <—s_“——e ‘ ) __;( s ) (1_ e"’)

can not necessarily converge to zero as s— oco.

Such being the case we can not take as A,=R, in the example.
However, if we take the set [0,1—1/s), then

P*(A)—1

and both quantities I*(X,, Y;; A,) and W*(X,, Y,; A,) are simultaneously
converge to zero as s— oo,

Relating to Theorem 3.1 and the example considered above we
have also the following result:

THEOREM 3.2. If there exist two positive numbers m and M, such
that

(3.5) m<LE) <y

g5(x)
Sor almost all (p,) x in R,, then (a) W(X,,Y,; R)—0 (s—o0), (b) I(X,,
Y,; R)—0 (s—o0) and (c) the condition (3.1) are mutually equivalent.

PrOOF. Since, the inclusion relations (a)=(b)=(c) clearly hold
(without the condition (3.5)), it suffices to show (c)=(a) under the
condition (3.5). From Lemma 2.2 we get for any given >0,

(3.6) PXs<{x;

%—1\26})§%V(Xn Y,;R).

Now,

@) WX YiR)=| (L-1)0dp

$ 3

2 2
:S <'é‘—1> gsd#s_}_g_ <—f‘i_1> gsd#x ’
As,e g: 45,6 \ s

where

AS,|= {x;

_.;:_é_:_;_ll <s} , A, =R,—A,..
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It is then seen that

(3.8)

o )2 ‘ 2pr, 2
SA,,.<g, 1) gdp,| =e'P7s(4, )=¢".

From the assumption (8.5) of the theorem, it is true that

%—-llgmax (M—1|,|m—1)=C, a.e.(x) over R,,

and therefore

(3.9)

I, (£-1) o

<C*-P¥s(4,,)
gs

which tends to zero as s—oo by (3.6). Thus,
W(X,, Y,; R,)<2¢’ for sufficiently large s.

Since ¢ is arbitrary, the proof of the theorem is completed.
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