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Summary

Let (X, Y), (X, V), -+, (X,,Y,) be i.id. as (X,Y). The Y-variate
paired with the rth ordered X-variate X,, is denoted by Y,, and terms
the concomitant of the rth order statistic. Statistics of the form T,=

n! é J(t,) Y., are considered. The asymptotic normality of T, is estab-
i=1

lished. The asymptotic results are used to test univariate and bivariate
normality, to test independence and linearity of X and Y, and to esti-
mate regression coefficient based on complete and censored samples.

1. Introduction

Let (X, Y3), -, (X,, Y,) be i.i.d. as some bivariate random variable
(X,Y). Let X,, be the ith ordered X-variate and Y,, be the Y-variate
paired with X,,. Following David [3], [4] the Y., will be called the
concomitants of order statistics. Bhattacharya [1] called them induced

order statistics. Statistics of the form Tnzn“f_.‘J(t,,,-) Y.., where J is
i=1

some weight function defined on (0, 1), are considered in this paper.

In Section 2, the asymptotic normality for T, is established under
fairly general conditions. This asymptotic result is established by ap-
plying the asymptotic results for functions of order statistics given in
Shorack [10] and Wellner [12]. Bhattacharya [1], [2] established weak
convergence results for the partial sum process of the Y, based on
stronger conditions than those given here.

In Section 3, three applications are considered. In Section 3.1,
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statistics of the form T, are used to construct large sample tests for
univariate and bivariate normality. The univariate normal tests are
analogous to those proposed in Shapiro and Wilk [8] and LaBrecque [6].
For testing bivariate normality, tests based on alternative model of
nonlinearity in the regression function are proposed. In Section 3.2,
various T, are used to construct tests for independence of X and Y
which will also give us information on the nature of the dependence
of X and Y. In Section 3.3, T, are used to obtain estimates for the
regression coefficient based on both complete and censored observations.
In the case of bivariate normality and complete data, the proposed
estimator is asymptotically as efficient as the maximum likelihood esti-
mator. The proposed estimators will be useful when the data are cen-
sored, because the maximum likelihood estimators are usually com-
plicated.

2. Asymptotic normality

2.1. Notation

For convenience, the following notation will also be adopted through-
out this paper.
F(x)=c.d.f. of the X-variate.
F'(uw)=inf {z|F(x)=u}.
O(x)=c.d.f. of a standard normal random variable.
9(x)=E (Y| X=x).
(x)=Var (Y| X=x).

2.2. Main theorem

The derivation of the asymptotic normality for T, is an application
of the general results of Shorack [10] and Wellner [12]. We shall first
prove a lemma which will be needed in the proof of the main theorem.

LEMMA 1. Let (X, Y1), (X,, Yy),- -+, be a sequence of random vectors
and for each nz=l (X, Y)),---,(X,, Y,) possesses a joint distribution.
Let Z,=((X,, Yy),-+,(X,, Y) and X,=(X,,---, X,), and let W (Z,) and
S.(X,) be respectively measurable vector-valued functions of Z, and X,.
Suppose S, converges in distributin to F,, and the conditional distribu-
tion of W, given X, converges weakly to a distribution F,, which does

not depend on the X’s. Then (W,, S,)—F,F,.

Proor. Let W and S be random vectors with distributions F,, and
F, respectively. Write
|E {exp [i(t/W,+1:S,)]} —E {exp (it/W)} E {exp (:t;S)}|
=|E {E [exp (it{W,+1:S,)| X,]} —E [exp («¢/W)] E [exp (3£:S,)]|
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+|E [exp (itiW)] E [exp (1#S,)]—E [exp (¢t;W)] E [exp (:£:S)]|
<E {{E [exp (:tiW,)| X,]—E [exp (:tiW)][}
+|E [exp (#t;S,)] —E [exp (2t;S)]| .

By assumptions, the last two expressions tend to zero as n—oo.
We shall consider n'*(T,—p,) where

=\ SN0,

J(tnl) t= 0
J(t)= , and J is the weight function
J(ta0) FT—-1)/n<t=si/n
used in T,. For fixed a;, a;, M and >0 define
D(t, ay, o) =Mt~ 12at9(1 — ) V2+aghs for 0<t<1,
B(t, a;, a))=Mt™y(1—t)™= for 0<t<1.

Let J denote a fixed measurable function on (0,1). Define q(t)=[t(1—
t)]** on (0, 1).

AssuMPTION 1. J is continuous except at a finite number of points
at which g[F~'] is continuous.

ASSUMPTION 2. Max |t,,—i/n]—0 as n—oo and where for some
1gisn
a>0 a[(i/n)A(1—1i/n)Stu=1—al[(t/m) A(L—1i/n)] for ¢=1,---, n.

ASSUMPTION 3. g[F~!] and <[F' '] are left continuous on (0, 1) and
of bounded variation on (4, 1—8) for every 6>0.

ASSUMPTION 4. For some fixed by, b,, d,, d;, |g[F'(¢)]|=D(¢, b;,by)
and |[F~'()]|=D(¢, d,—1/2, d,—1/2).

ASSUMPTION 5. |J(t)|<B(t, ¢, ¢;) on (0,1) where c,=min {b;, d,/2,
1/2}, i=1, 2.

ASSUMPTION 6. S:B(t, ¢, C)@)d|T[F Y (t)]| < oo.
ASSUMPTION T. oﬁzgz S:(s/\t—st)J(s)J(t)dg[F"(s)]dg[F“(t)]<oo and
ot = g: T F-()]dt < oo.

AssumpTION 8. J' exists and is continuous on (0,1) with |J'|<
B(t, 14¢;, 1+cy).

THEOREM 1. If Assumptions 1 to 7 hold, then n'*(T,— )~ N(0,
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oy+a3) with p, finite.

PROOF. Let S,=n"' z: J(t,)9(X.,). Then by Theorem 1 and Ex-

ample 1 of Shorack [10], we have n'*S,— p,,)—d>N(0, a)). Next consider
W,=n"! éJ (t.)[Yin—9(X:,)]- Bhattacharya [1] showed that Yi,,:::, Y,.

are conditionally independent given X,,,---, X,, with respectively con-
ditional c.d.f. G, (¥),---, G, (y) where G.(y)=G(Y<y|X=x). Let (Z.,
-+, Z,,) be a set of random variables distributed according to the con-
ditional distribution of (Yi,—g(Xy,), -, YVn—9(X,.)) given X.,---, X,..

We shall show that W ,=n"" i‘, J(t,))Z,, upon suitable standardization
converges in distribution to N(0,1). Let n~'C:=n"?3)J¥t,)(X.). By

Lindeberg’s normal convergence -criterion n‘”W,,,/C,,—d»N(O, 1) iff for
every e>0 n-IC;? 31 JX(t,)H, (X.)—0 as n—oco where HK(x)=S [y—
i=1 A

9@)'dG.(y) with A={ly—g(x)|zK} and a,=eJ '(t,)n"*C,. By the
strong law of large number for a function of order statistics given in
Wellner [12] for almost all realization of the sequence X, X,,+-+, C2—

o2, and for any K>0, we have n-! ﬁ‘,Jz(t,,i)HK(Xin)——»S:Jz(t)HK[F"l(t)]dt
i=1
as n—oo. Since a,;— o as n— oo, Lindeberg’s criterion holds for al-

most all realizations of the sequence X, X,,---, and thus n”’W,.z/C,,—d»
N(0,1). By Lemma 1, we have [n'*W,/C,, n‘/z(Sn—,u,,)]—d»N(O, 1)N(0, ¢2).
Since 0T, — ) = Co(nV*W,/C,) + 0V (S, — ), 0V To— 1)~ N(O, 0%, +a?).

With additional Assumption 8, we have the following useful result.
THEOREM 2. Let pzS:J(t)g[F“(t)]dt if Assumptions 1 to 8 hold;
then NYY(T,—p)->N(0, 6%, +0?) with p finite.

Remark 1. The above results can be obtained with weaker condi-
tions (e.g., more general scores) similar to those given in Shorack’s
[10] paper. However, the above theorems are probably sufficient for
most applications.

Remark 2. Often in application Assumption 4 is replaced by mo-
ment conditions on g(x) and z(x):

ASSUMPTION 4*. For some 7, §>0, S:lg[F"(t)]l’dt<oo and S:lr[F“
()] 'dt < o

Then Assumptions 5 and 8 are replaced respectively by:
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AssumpTION 5*. |J(t)|=<B(t, ¢, ¢) for 0<t<l with ¢=min {1/2—1/r
—3,1/2—1/(25)—3/2, 1/2} .

ASSUMPTION 8*. J' exists and is continuous on (0,1) with |J'(?)]|
<B(t, 1+c¢, 1+c¢) on (0, 1).

Remark 3. The distributions of X and Y need not be continuous.

3. Applications
3.1. Testing mormality

Consider Ty=n"'3} H[0~(i/n—1/@n))]Y,n, k=1,2,---, where the

H, are Hermite polynomials (Sansone, [7], p. 303). The first few are H,
=1, H=2, Hy=x*—1, Hy=x*—3x,---. Since the T,, only involve the
ranks of the X,’s, we may assume that the X,’s are i.i.d. N(0,1). Let

pe=|"_ H@)g@doe)

si=\" Hap@dow+|" " 10@A)-0@0w)Hi@) Hw)
- dg(x)dg(y) .

If appropriate conditions are satisfied, then n'*T,,— p,c)—d»N(O, a?). In

fact nVH(Tu,- -+, Tog)— (1 5 )] > Ni(0, X) where X=|lo,;|| with o,,=
| H@H @@ +|" |~ 06AY)-0@0@) E@H@d@dw).
Suppose we wish to test the null hypothesis that the (X;Y;) come
from a bivariate normal distribution with correlation p, E(Y)=g, and
Var (Y)=o¢.. Under the normal hypothesis, using the fact that E[H;-
(X)H(X)]=Fk!3,;, and H/.,(x)=(k+1)H(x), we can show that g =ps,
=0 for k=2 and o,,=k!loX(1—pk/(k+1))3,.. Let oi=k!oy(1—p%k/(k+1)
where g, and p are some consistent estimators for ¢! and p, e.g.,
the sample variance and sample correlation. If |T,.|=2n"%60,@ '(1—a/2))
(k=2), a departure from linearity in the regression function with sig-
nificant kth order polynomial trend is indicated. The asymptotic power
of the test is apporoximately 1—@[0~'(1—a/2)o:/o,—n" wi)o,]+O[—P'-
(1—a/2)o,/o,—n"* /o] which depends on |gfo]. If we want to detect
the over all nonlinearity in g(x), we might want to use the test cri-

q
terion n 3> TZ/oi>c where ¢ is the percentage point of a chi-square
k=2

distribution with (g—1) degrees of freedom. Under the alternative this
chi-square test statistic is approximately a weighted sum of (¢g—1) non-
central chi-square random variables with one degree of freedom. The
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weights and the non-centrality parameters depend on the g, and o;.
It is not clear how one should choose ¢ but clearly ¢ cannot be too
large relative to the sample size n. It should be mentioned that the
tests proposed here can also be used as tests for linearity of the re-
gression funection.

The special case p=1 in the preceding development can be used to
test univariate normality. In this case the Y, are the order statistics
of the sample under consideration. Under normality, the asymptotic
means and variances of T,, are respectively

gy k=1
0 k=2,38,---,
or=oy(k+1)!(E+1)72.

Pe=

Let oi=0o2(k+1)!(k+1)"* where o is the sample variance. Following
the ideas of LaBrecque [6], T, (k=2) and the chi-square test statistics
defined in the bivariate normal case can be used to test against the
alternatives of various nonlinearity in normal probability plots. For
example, a large value of |T,;| indicates asymmetry of the distribution,
and a large value of |T,;| indicates deviation from the normal kurtosis.
Since past studies have shown that Shapiro-Wilk test and its extensions
(Shapiro, Wilk and Chen [9]; and LaBrecque [6]) perform well, one
expects that for large samples the tests proposed here will perform

well.

3.2. Testing independence

Here we shall assume that F' is continuous, but the distribution of
Y can be discrete. Since T, only involves the rank of the X,’s, we
may assume that F=N(0,1). If X and Y are independent, then the
asymptotic mean and variance of T,, (k=1) defined in Section 3.1 are
respectively 4, =0 and oi=03k!. Let gi=a,k! where g, is some consist-
ent estimator for ¢2. If |T,.|>n"Y%60(1—a/2), a kth order polynomial
trend in g(x) is indicated. As in Section 3.1 for detecting general fune-

tional relationship between X and Y, a chi-square test using n Xq} T/
k=1

o: is recommended. The asymptotic efficiency of these two types of
tests as before will depend on g/o, for the former and on p, and o
for the latter. Other nonparametric tests of independence, e.g., the
Spearman’s rank correlation test, do not by themselves indicate the
nature of the dependence. The tests proposed here give information
about the specific nature of the dependence which might be useful in
exploratory research. If the distribution F' is known, then @~!(i/n—
1/(2n)) should be replaced by F~'(4/n—1/(2n)) in T,, and orthogonal poly-



LINEAR COMBINATION OF CONCOMITANTS OF ORDER STATISTICS 469

nomials with respect to the measure induced by F should be used rather
than the Hermite polynomials.

3.3. Estimation of regression coefficient

Assume that Y;=a+pX,+Z; (i=1,---,n) where the Z’s are i.i.d.
random variables independent of the X,’s. Let o}=Var(Y), oi=Var(X)
and p be the correlation between X and Y.

We shall first study the bivariate normal case with censored data
—a situation which is quite common in practice. For example, the X,
are the entrance scores and the Y,, (¢i=r+1,---, n) later scores of the
successful candidates. Suppose we have (X, Y,.),:, (X Y,,) with
1=r<s=mn. Let

Y=Y, -, Y

a=(m 5 0n),  an=E(Xy)/o,
C=covariance matrix of (X,,,- -+, X.)'05*
J=(1,---, 1)

2=["C+A-p)I]".

Using Gauss-Markov least-squares theorem, we can show that the best
linear unbiased estimator for ps, is

o _ [(J2])a—(J2a)T12Y
POVTI(T 2T @ 2a)—(@RT)]

For large n, the elements of the C matrix are generally small (of order
n7Y). By neglecting the term pC in £, for large m, po, is approxi-

8 -1 s
mately equal to (pa,,)*:[g‘_. (a,-n—&)z] > (@n—a)Y;, where a=(s—7)"!
i o;,. Watterson [11] has shown that this type of simple estimator

is generally low in variance. Since Y,=a+8X,.+Z,, we may di-
rectly apply Shorack’s [10] result to establish the asymptotic normality
of (pa,)*. Suppose a<b and r/n—®P(a) and s/n—P(b) as n—co. Then

7 (po,)* —pa,]-> N(0, 7,) Where
7=[0(0) —0(a)] ! Vi1 — oY) + [4 V4] [O(b) — O(a)] %02 D,

and

Do =[00)—0@]" | (¢ — ) d0) V2,

oy = S: zd0(z) Voo =[0(b)—D(a)]™* S: (% — ptar)’dO() .
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A simplified best linear unbiased estimator for ¢, by taking C=1I (Gupta
s -1 s
5] is a,,=[g (am—ay] S (@—@ X If r/n—0(a) and sin—0(b) as

n—oo, then n'c¥—a,)->N(0, ;) where 7,=[4V3]7{O(b)—®(a)]'o2D,,.
Hence a consistent estimator for 8 is g*=(po,)*/o¥. Using the Cramer-

Wold Device, we can show that n'"[((c0,)*— o0,), (a;‘—a,)]iN(O, )
where I'=|ly,;|| with yy=1, ra=r and 7,=[4V2]7'[®(b)—P(a)] 00,0, D,
Hence p*=(po,)*/o¥ is asymptotically normal with mean g and variance

'I[Va,,ox(@(b) cD(a))] lg(1—p%). For a complete sample, we have g*=

nt Z a;, Y. /nt E @, X;, with asymptotic variance n~'o;%%(1—p’). Hence

B* 1s asymptotlcally as efficient as the maximum likelihood estimator
for 3. A large sample 100(1—a)% confidence interval for g is

pr+0- ( ){[nvabwa») D(@)]} (o) 53— (po, )]

where ¢; is some consistent estimator for ¢;. For n sufficiently large
(e.g., »>50) we may replace a,, by @(i/n—1/(2n)) in these estimators.

In the case of censored data, the proposed computationally simple
estimators will be of use because the maximum likelihood estimators
are rather complicated and not always practical. Moreover, if the X;’s
are suspected to contain outliers, a small tail portions of the X,,’s can
be trimmed and the g8* computed from the trimmed data will be robust
against outlying X-observations.
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