Ann. Inst. Statist. Math.
33 (1981), Part A, 449-462

LARGE SAMPLE PROPERTIES OF JAECKEL'S
ADAPTIVE TRIMMED MEAN

PETER HALL

(Received June 11, 1980; revised July 6, 1981)

Summary

A critical examination of Jaeckel’s (1971, Ann. Math. Statist., 42,
1540-1552) study of his adaptive trimmed mean reveals that the theory
is not applicable in many important cases, such as when the optimal
trimming proportion is close to 0 or 1/2. This region includes the
normal and double exponential distributions, among others, which have
received considerable attention in the study of other adaptive location
estimates. In this paper we obtain results which justify the use of
Jaeckel’s trimmed mean for a very large class of distributions. By
restricting this class we obtain weak and strong rates of convergence
which are much faster than those given by Jaeckel.

1. Introduction

Let X, X,, -+, X, be independent random variables whose common
distribution is symmetric about its median, . The a-trimmed mean
of the sample is defined by

Ea:(n—Z[an])—linlﬁ:ani s 0a<l/2

where X, <X, ,<.---<X,, denote the sample’s order statistics and [an]
stands for the integer part of an. The trimmed mean is an estimate
of 4, and under mild regularity conditions, »'*(x,—6) is asymptotically
normal N(0, ¢%). The asymptotically optimal choice of «, say «a,, is
that one which minimizes ¢%. Jaeckel [7] proposed a method of esti-
mating «,. His approach was to construct an estimate of ¢%, say 2,
and use the value of @ which minimizes 6% as the trimming proportion
in the construction of Z,. He proved a result which indicates that
his adaptive procedure is “asymptotically as good as knowing and
using the best a”.
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A critical examination of Jaeckel’s work reveals a number of
assumptions which seriously restrict the use of his estimate. Firstly,
he stipulates that a, be not close to 0 or 1/2. This eliminates distribu-
tions like the normal (for which «,=0) and the double exponential
(a,=1/2), both of which have received considerable attention in the
construction of other adaptive estimates of location (see for example
Prescott [9]). Jaeckel ([7], p. 1545) does discuss the possibility of a
nonunique «, but in this case his procedure must be modified and
requires the subjective choice of a sequence of constants {z,}.

Other restrictive assumptions are that the estimate of «,, say a,
must be chosen from a predetermined range [a,, a,] where 0<a,<a,<
1/2, and that the value of @ be unique. In this paper we relax all
of these conditions, making Jaeckel’s procedure more universally appli-
cable. We also remove many of his restrictions on the smoothness of
the underlying distribution—for the most part we do not even assume
that there exists a density function.

Jaeckel’s justification for his procedure was that his adaptive estimate
satisfied the same central limit theorem as its optimal non-adaptive form,
and so had the same asymptotic variance. The central limit theorem
is only a “weak” measure of the rate of convergence of an estimate;
a “strong” measure is provided by the law of the iterated logarithm.
Under weaker conditions than Jaeckel imposed we show that his estimate
satisfies the same law of the iterated logarithm as its optimal non-
adaptive form.

Jaeckel [7] and Andrews et al. [1] report on Monte Carlo trials of
the estimator. This work is mainly concerned with small sample sizes,
but it is apparent that while the adaptive estimator is reasonably efficient
for samples of about 20, the value of & is still some distance from a,.
Jaeckel’s result tells us only that Z; —Z, =o(n""*) in probability, and
a faster rate of convergence is needed if the estimate is to be used
for moderate sample sizes. To this end we prove that under slightly
more restrictive conditions,

o O(n~**) in probability
c; _xa =
v  |O((n'log log n)**) a.s.

(Here a.s. stands for “almost surely”; 2, will denote convergence in prob-
ability.)
2. Properties of the estimates

Let X, X,, --- be independent variables with a common continuous
(but not necessarily absolutely continuous) distribution function F(x—6)
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where 6 is the unknown location parameter. Assume that the dis-
tribution is symmetric about #, and set F~'(¢)=inf{x: F(x)=t}. If
0<a<1/2 then n'*(%,—0) has an asymptotic N(0, ¢%) distribution if and
only if the (1—a)th quantile is unique (Stigler [11]). In this case

ai=2(1—20)y*{ "vaF @)+ gt}

where &, =F'(1—a). It makes little sense to compare the “spread” of
normal and non-normal distributions on the basis of their variance,
and so we are obliged to assume that &, is uniquely defined for 0<
a<1/2. That is, there are no gaps in the support of the distribution
and F is both continuous and strictly increasing. In this case ¢% is a
continuous function of «a.

Suppose 0<a<1/2 and let .% and .7 (a) be the sets of values in
the ranges 0<a=<1/2 and 0<a=a, respectively, which minimize o%.
If 1/2e€.o7 we assume that ¢?,=lim ¢% exists (finite), and therefore
(1—2a)7'¢, is bounded as a—1/2. a(l)/f)viously 0e.” or 7 (a) entails
E(X)<o. If 1/2€ .57 then

S:"xzdF(x) —0((1—2a)?) Y"dF(x) —o((1—2a)") ,

and olz-hm (1—-2a)7%% = {2F;(0)}%. Consequently 1/2€.%” entails

the ex1stence of a non-zero right derivative F;(0). (Possibly F;(0)=co.)
An estimate of ¢% is given by

Fr= (120 {0 S (X =B+ @Ko B + @ Komotam =5 -
We choose a to minimize 62 but consider only values of « in the range
0<a<1/2—n""2. The reason for this restriction is that if a=a(n) tends
to 1/2 too quickly then 4% will not be a consistent estimator of ¢i,.
The variable 6, may be viewed as based on a naive estimator of the
reciprocal of a density, similar to that proposed by Bloch and Gastwirth
[4]. As is well known, such an estimator will not be consistent if the
window size, 1/2—a(n), converges to zero too quickly. In practical
terms, the minimizing value of a should not be chosen “too close” to
1/2. (It will be clear from the proofs that the assumption 0=<a(n)=
1/2—Cn~'”* for all n and any C>0, will suffice.)

Let .o7, and .o/,(a) be the sets of values in the ranges 0<a=<1/2—
n~ 2 and 0<a<a, respectively, which minimize 2. Our first concern
is to show that the elements of .o/, and .%/(a) converge to those of
.7 and .57 (a). For each ae ., or.%(a), let 3=R(a) be that element
of % or .97 (a), respectively, which is closest to a.
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THEOREM 1. If 0<a<1/2 and .7 (a) is finite then
(1) sup |a—g(a)|—0 a.s.

aessy(a)
If o7 s finite, if F has a derivative in an interval (0,¢) for some
>0, and if F'(0+) exists and is mon-zero (possibly F'(0+)=co) then

(2) sup la—g@]| 5 0.

The first part of Theorem 1 holds under weaker assumptions than
Jaeckel’s Lemma 3, and provides a strong version of his result.

THEOREM 2. Suppose 0<a<1/2 and o7 (a) is finite. If 0e .57 (a),
assume that E| X, |**7<c for some 7>0. Then

o(n~%y im probadbility

SUp |Ze—Zpio | =
p)l o {o((n* log log n)"*) a.s.

ae 7y la
If in addition F has a dertvative in an interval (0, ¢), and F’'(0+)
exists and is non-zero, then sup |Zy—Zs(a) | =0(n"%) im probability.

From Theorem 2 and limit laws for the trimmed mean (see Shorack
[10] and Wellner [12]) we may obtain weak and strong rates of con-
vergence for the adaptive trimmed mean.

Our last result presents faster rates of convergence under more re-
strictive conditions. To simplify the proof we shall consider only the
case of minimization in the range 0<a<a, where a<1/2, and assume
that .27 (a) has only one element «, with a,#0. Given a sequence of
variables 4,, write 4,=0.B.(\) to denote that 4,=0(n"%) in probability
and O((n'loglog n)*) a.s. Let s(a)=0c.

THEOREM 3. Suppose F has a derivative in a neighbourhood of
Eapy cOntinuous and mon-zero at &,, and s has two derivatives im a
neighbourhood of a, with s continuous and non-zero at a,. Then
sup |a—a,|=0.B.(1/4) and sup |Z,—Z,|=0.B.(3/4).
ae.w,(a)

aew,(a)

3. The proofs

There is no loss of generality in assuming that 6=0. In the work
which follows some of the relations should strictly be qualified by “a.s.”,
but we shall omit this. During the proofs of Lemmas 1 and 2 we
shall make use of the theorem of James [8], theorem Al of Shorack [10]
and theorem of 3 Wellner [12], which describe the asymptotic behaviour
of the empiric process.
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LEMMA 1. Assume F has a derivative in an interval (0, &) for
some >0, and F'(0+) exists and is non-zero. Let m,, n=1, be integers
such that m,/n—0 as n— o and m,=n". Then

nt+m+l
(3) SUD | Ko — @mAD ™ S Ko =0(n)
and
(4) S M) Kinisinim— Kanirnd) — (2F O+ | =0(1)

wn probability.

Proor. We may assume that the distribution’s support is confined
to (—e¢, €), and F"” exists and is bounded away from zero on (—e¢, ¢). For
otherwise, choose ¢ so small that F’ is bounded away from zero on (0, ¢),
and replace F' by any symmetric, absolutely continuous distribution G
which agrees with F on (—(1/2)¢, (1/2)¢), is bounded away from zero on
(—¢, €) and satisfies F(¢)=1. Note that with probability tending to 1 all
of the order statistics X,,,,; with |n—4|<m,+1 lie in (—(1/2), (1/2)¢).
For such an F, F~' has a bounded derivative on (0, 1), continuous at
x=1/2. Let G(x)=1—e¢* H=F"'G and ¢c=H'(log2)={2F'(0+)}"*. Then

(5) H(z)=H(y)+ (@ —y)c+(@—yh(x, y)

where h is bounded on (0, )* and h(x, y)—0 as x, y —log 2.

We may write X,,=H(Z,,),1<i1<n, n=1, where the Z, are in-
dependent exponential variables. In view of the expansion (5) with
x=2, and y=EZ,,, (3) will follow if we prove that

n+m+1
(6) sup (Z2n+1,n+1_EZ2n+l,n+1)~(2m+1)_1n_zm‘t+l(z2n+l,i_EZ2n+1,i) =o(n~"%)

lsmsmy,

in probability, and
(7) sup E[(Zyu11,i—EZsui1, 0 Zsni1,1y BZynyy,) | =0(n™) .

Im—i|Smy+1

The variables Z,,,,; 1<1<2n-+1, have the same distribution as
Zhi=3Z/@n+2—), 1=i=2n+1
1

(see David [5], p. 17), and the variables
L,= sup |MZu1,i EZ3400]

In—ilsm,+1

are uniformly bounded and converge to zero in probability. If [n—i|<
m,+1,
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E[(Zsi1,—EZ 0 DM 21y B2 41,0 | SE(LLS,)

where S,= sup Izi‘,(Z,-—l)/(2n+2—j)|. Doob’s inequality (Doob [6],

i=ntmy,+1
p. 317) implies that E(S?)=0(n""), and so {n"*S,, n=1} is uniformly in-
tegrable. Consequently E(L,S,)=o0(n""?), proving (7). To prove (6) we
observe that

(Zhssnni—EZb )= @m+ 17 3 (70 ~E 280
—@m+1) {”_"z:,;(z,.—1)(m—n—1+«:)(2n+2—i)—1
—":i:‘,:l(Zi——1)(n+m+2—i)(2n+2—i)“} .
We shall prove that

(8) sup |2m+1)" 33 (Z,—~Dilm+n+1—i) | =o(n) ;

s
1sm=m,

condition (6) will follow from this and a similar result. Let T,=
i
>, (Z;—1) and use Abel’s method of summation to show that

4. =S (Z—1)im+n+1—i)
i=1
=$ (T,—T._)i(m+n+1—i)"

= =% TG+ 1)(m+n—i) " —i(m+n+1—i)" ]+ Tam(n-+1)"

1

= —E T(m+n+l)(m+n+1—10)"'(m+n—39)"'+T,mn+1)"".
1
Therefore

sup m™| 4, |= {1;1513 | Ttl}{(m,.+n+1)/n2+n“} .

lsmsm,

Donsker’s invariance principle (see Billingsley [2], p. 68) implies that
sgp[T,.|=O(n‘“) in probability, and so (8) holds.

" To prove (4), let Y,n=X,. 1nsmn—Xons1nse In view of (5) and (7)
we have

Ynm —E Ynm = {(Z2n+1,n+m - EZZn+1,‘n+m) - (Z2n+1,n+1 - EZ2n+l,n+1)}c + O(n_l/z)

in probability, uniformly in n?<m=<m,. Since

n+m
(Z:n+l,n+m_EZ2tt+1,n+m) —'(Z‘;:\+l,n+1_EZ2*n+l,n+1) =Z+‘42 (Zi— 1)/(27" +2 - 1,)
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then it suffices to prove that

(9) 4,,=_sup (n/m) )](Z —1)/(n+1-1) | =0(1)

alilsmzm,
in probability, and

(10) 4= sup |(n/m)EY,,—{2F"(0+)}7—0.
Using Abel’s method of summation again we find that
S (Z—=Dfn+1-1)| = { sup | 7.1 omf(n—m) + 1/ —m)}

and so for a constant C,

4, =Cn™"" sup I T:|=0((m./n)"")

1si<m
in probability, proving (9). Finally, in view of (5) and (7),

E( Ynm) = H(EZ2n+1,n+m) —H(EZ2n+1,n+1) + O(n~1/2)
=E(Zuni1,ntm— Zonsr,ni)(€+0(1)) +0(n7)

and since E(Z,, 1, nim— Loni1,nr)~m[n, (10) is proven.

n—[lan
For 0a<1/2 define 7,=n"" | ]X,“,.

[an]+1
LEMMA 2. Suppose ¢, | 0. If 0<a<1/2 then

Sup | Fu—Tu| o(n~"*) im probability

u a " Yatre| —

0<5<13n Va"Yor o((n~!log log n)"*) a.s.

If E|X|"""<c for some 7n>0 then the result is also true for
a=0,

Proor. It suffices to prove that there exists a function f(6) —0
as 0 —0 and variables Z,(6) such that for each >0, (i) sup G Y| S

E&C

f)Z,5), (ii) n'?Z,(0) has a limiting distribution not dependmg on 4,
and (iii) (n/loglogn)*Z,(8), n=1, has its a.s. limit points confined to
a compact interval not depending on §. Suppose 0<a<1/2 and
0<a—d<a<a+06<1/2, and define Yi=X, if —¢&, ;<X,<—Ears; —Eas
if X,<—80 s —Cups If X, 804y and Z)=X, if £, <X, <Eus Ears if
X, ZCurs; €asif X,=&,;. Let G,and H, be the respective distribution
functions of Y} and Z?, and Y}, and Z!, the order statistics. With
probability tending to 1 as m— o,



456 PETER HALL

[(a+s)n] n—[an]
1 Fe=Tarel= |07t 3" Hon ST x|
[an]+1 n—[(a+e)n]
" [(e+ern] s L n—lan) s
=|n SVt STz,
{an]+1 n—[(a+e)n]+1

for all 0<e<e, and n=m.

Define a,(t)=1 if [an]+1=nt<[(a+e)n]; 0 otherwise, and aX(t)=
a,l+n"'—t), b (t)—S a,(uw)duw and b*(t)—g aX(uw)du=>b,1—t)+0(n™") uni-
formly in ¢ and ¢. Then

| prdts = bi-0d65 (0 = | b0 (1) + 0

uniformly in ¢. (Here and below, Sb dB(t)—S -dB(t) for any funec-

a<tsh

tion B of bounded variation.) We may write Y.,=G;Y(U,,) and Z},=
H;Y(U,;) for 1<i<m and n=1, where the U,=F(X,) are uniform (0, 1)
variables. Let G, be the empiric d.f. of U, ---, U,. Then

[(a+e)n]

nt S V=0t S G (Udan(GA(UY)

[an]+1

= S:GE Y(t)db,(G.(t) =G (1)b,(1)— S:b,.(G,.(t))dG;‘(t)

and

n—[an]

wt ST Z=HAO4)0E0)+ | biG. ) ®)

n—[(ate)n]+1

Therefore the right-hand side of (11) is dominated by
4,= | [5.G(0)—b,(0) | dG7(1) + | |2(G.(0) b () | dHF (1) + O ™)

Each term within modulus signs is dominated by |G,(t)—t|, and so 4,<
f(8)Z,(0) where (0)= Sld{G;‘(t) +H;'(t)} —>0as 0 —0, and Z,(6) =sup|G.(t)—
t|+0(n-) satisfies conditions (ii) and (iii).

It remains to consider the case a=0. For >0 define Y:=X, if
X, < —¢&;; —& otherwise, and Z:=X, if X,>¢&;; & otherwise. Let G;and
H, be the respective distribution functions of Y} and Z]. With prob-
ability tending to 1 as m— oo,

[en] n
(12) 1 Fo—Ta| = \n S Xutnt % X,

—] z] Yitnt 3 75

n—Llen]+1
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for all 0<e<e, and n=m. Define ¢,(t)=1 if nt<[en]; 0 otherwise, and
t 1

crt)=c,(L+n'—1), d, (t):S c.(w)du and d:(t)=§ cxwdu. If B|X,[r7<
0 t

o and (2+7)(1/2—¢)>1 then '

[1az0—d.a—v1 a8 O=| mina—t, n)aHr e
<qvet 52(1 — )¢ dH; (1) =0(n =) .
Now, Y:,=G;%(U,,) and Z.,=H;'(U,,). Moreover,
71 S GV, =G (a1 - | 46006
and

wt S HP(U)=Hr0H)a0)+ | G o)H ) .
Combining these estimates we see that the right side of (12) is dominated
by

4,={4.(G.) ~ ()] 4G ®) +{ |42 (G.(e) — 2| dH )
+O0(n~*%)
uniformly in ¢. Therefore 4,< f(0)Z,(0) where for (2+%)(1/2—¢)>0,

F@O={ A1 dIG O+ H'®)] >0 as 50

and Z,(0)=sup[t(1—)]"*** |G, (t)—t|+O(n""*%). Here G, is the empiric
distribution function of F(X)), ---, F(X,). By theorem Al of Shorack
[10] »¥2Z,(5) has a limiting distribution not depending on 6 [condition
(ii) above], while by the theorem of James [8] or theorem 3 of Wellner
[12], (n/loglog n)"?Z,(0) has its a.s. limit points confined to a compact
interval not depending on & [condition (iii)].

PrROOF of THEOREM 1. Let .9 (a) be the set of points such that
P({for some Be.%(a), |a—B|<e} infinitely often)=1 for all &>0.
(The tail o-field of the sequence X, X,, --- is almost trivial, and so
the probability on the left above takes only the values 0 and 1.) For
ae .. (a), let y=v(a) be the element of .97 (a) closest to a. If a0
and 0<¢=<a,

N n—[rnl
Rz6=(1—29) n " 3 K= n =2
rnl+l

+ 7(Xn.[rn]+1 - E?‘)z +7 (Xn,n—[rn] - 57)2} .
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In view of the continuity of F' and o2, the right side has o2 as an a.s.
limit point, while the left side converges a.s. to ¢i. Therefore ae
7 (a). If a=0 then liminfy=0a.s., and if 0<£¢<ae and vy<7=a then

n—[rn}
325z (1—27)" 0 > (X&)
[ral+1
n-L7n] n—Lyn]
2(1-27)"n7 3, (Xu—Z)'Z (127" 3, (X.—7,)" .
[7n]+1 [7n]+1

The right side has zgeﬂxng(x) as an a.s. limit point, while the left

side converges a.s. tooai. (Note that lim inf v(n)=0 a.s.) Letting 7—
0 we deduce that 0€.97(a). Therefore .9 (a)=.%(a). We shall prove
that this implies condition (1).

Since .97(a) is finite, there exists a point «, €.97(a) at which the
supremum on the left side of (1) is achieved. In view of the Hewitt-
Savage zero-one law (see Breiman [3], page 63) the quantities

lim sup {an - B(an)} ’ lim inf {an - IB(aﬂ)}

are constant a.s. If we assume that (1) fails then either the lim usp
is positive or the liminf is negative. We may confine attention to the
former case, and assume that for some 6>0, hm 1 Sup {a,—B(a,)}=06 a.s.
Let A be the set of sample points @ at which this relation holds. Then
P(A)=1, and for each we A there exists an increasing sequence n,=
n.(w) defined by the smallest integer » such that |a,(w)—B(a. (@) —d|<
1/k. Let

M) =lim sup{B(a,))) +9} ,

and choose an increasing subsequence {m,} of {n,} such that g(a, (®))+
0 —Mw). Then a,, —xa.s., and for all ¢>0,

P({for some Be.%7(a), |IN—B|<e} infinitely often)=1.

Since .97 (a) is finite then B(a,,)+0 can assume only a finite range of
values, and so the random variable \ takes only a finite range of values.
One of these values, say \,, must therefore satisfy both P(x=2x,)>0
and

P({for some Be.57(a), |\ y—B|<e} infinitely often)=1

for all €>0. This means that \,€.%7(a), and consequently \,€.%7(a).
Since B(a) equals that value in .97(a) which is closest to «, then on
the set {\=X\,} we have

Iamk_ﬁ(amk)Iélamk_)"olzlamk—kl .
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But the left side converges a.s. to & and the right side converges a.s.
to zero as k— o — a contradiction. Therefore our original assumption—
that (1) is false—must have been wrong.

A similar argument shows that (2) will follow if we prove that
whenever

lim lim sup P(sup .%,>1/2—¢)>0,

e—0 n—00

we have 1/2€.97 We shall assume that the lim sup may be taken
over odd %, and in order to simplify the notation, that

lim lim sup P(sup .%4,,,>1/2—&)=26>0 .

0 n—00

(The case of even » may be treated similarly.) With m=2n+1 and
v=sup .%, we have for any 0<£<1/2 and large =,

(13) 6: 267271 —27) (X, trmit1 =) + (X mtymi — 1)} -
Lemma 1 implies that for any ¢>0 and all large =,
P(|(1—27)" (X m-trm1 — Xomne) —{2F"(0+)} [ <e
and n'"*| X, ..—%;|<e)>0.
Since each «a €.97, satisfies a<1/2—n""* then n*(1—2v)=2, and so
P((A—2Y)" (X pmtrm1 —Zr) — {2F'(0+)} 71| <8e/2)>6 .

A similar argument can be applied to the first term on the right in
(13) and so for all ¢>0 and all large » we have with probability greater
than 6 that 2>{2F'(0+)}*—e. Since 6§£>a§ then o:={2F'(0+)}7?,
and so 1/2¢.¥.

PrROOF OF THEOREM 2. An analogue of Lemma 2 in which the
supremum is taken over —e¢,<e¢<0, is easily proved. Theorem 2
follows easily from this, Lemmas 1 and 2 and Theorem 1. Note that

(14) | Ea - Eaﬂ I gn{n _2[(a + 6)’";]}—1 | ga - "ja+e |
+2n{n—2[an]}{n—2[(a+em]}" {[(a +e)n]—[an]}y.| ,

and |7.] is O(n~*) in probability and O((n~*log log n)"*) a.s.

PrROOF OF THEOREM 3. Consider the expansions

(1—2(1)2(62_0‘2,) = {S—ea + SX‘"’"—[an]

}xzan(x)
Xp,lan] fa

ta
+[ aa(F @)~ F@) + al Fntami =T + Koot =7 — 263}
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and

—fa Xn,n—lan]
(15) n(n—2an )z, = {| +§ }adF, @)

n,lan] fa
ta
+{* saF @ - Fay,
where F', is the empirie distribution function and g has the obvious
a<z<b

interpretation if b<a. Evaluate the integrals by parts; for example

L sdF.@=¢n(an]+D—F.(~&)

" F ()dx

n,{an]

— (a4 Dfgat Xotan) = |
and

[" sdiF,@)-F@)

a

=6 P~ FE)+ P —£)—F(=t) = | (F.@) - F@)da

Applying the probability transformation we deduce from the usual
limit theorems for empiric and quantile processes that for small ¢>0,

|a§2?<5 {I Ea+ Xn,[an] | + [Ea—Xn.n»[an] |}
+sup | F,(x)— F(z)| =0.B.(1/2) .

Substituting the expansion of Z, into that of 62—o% we obtain

sup |6%—o0%|=0.B.(1/2) .

la—ay|<e

From this fact and since
(16) 0= 0% —0% =0%—0%+0%— 0%+ 04— 0%

we see that 0=<4;—4% +0.B.(1/2) uniformly in |@—a,|<e. With prob-
ability tending to 1 as m— oo, |[a—a,|<e for all @e.97(a) and all
n=m (use Theorem 1). Since 7;—3a% =0 for all a€.%(a), then

sup |8:—62 |=0.B.(1/2) .

ae. yla)

Substituting this back into (16) we see that

sup |o%—o0%,|=0.B.(1/2) .

aeyn(a)

But ¢%—0% ~(1/2)(a—a,)’s"(a,) as a—a,, and so
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anmn sup( la—a,]=0.B.(1/4) ,
ae v pla)
proving the first part of the theorem. We shall prove only the “in
probability” portion of the second part of Theorem 3; the “a.s.” portion
may be proved in the same way.
Let £>0. In view of (17) we may choose C, so large that

(18) P( sup |a—a,|< C;n“"‘) S1—¢

ae ,(a)

for all n. Define U,, as in the proof of Lemma 2, and observe that
for ¢>0 there exists C, so large that for all n>=>N(e),

P(U,—i(n+1)"|<Cm* for en<i<n(l—e))>1—¢

(see Jaeckel [7], Lemma 1). If ¢ is small then for all n=N(e) we have
with probability >1—¢ that for all ¢ with |i—[na,]|=<2Cn*,

[ U=t +1)7 Y+ i+ D) —a, | KCn ™2+ 2Cm ™4+ 2/n .
Let 6=0(n)=4Cn~"*. For large =,

(19) 1—e<P(U,;—a,|<d for all |i—[na,]|=2Cn**)
=P(—¢&o-s < Xpi < —Eapss Tor all [i—[na]|=(1/2)n0) .

Similarly P& +s< X <oy for all [i—n+4[na]|=(1/2)n6)>1—¢. Com-
bining this with (18) and (19), and defining Y3, Z:, G, and H, as in
the proof of Lemma 2, with «, replacing «, we see that for large =,
with probability >1—3¢,

sup ['y_?-jaolé sup Ig"‘?—jaol ’

ae ,(a) la—ay| <d/4
X..=Y:, for |i—[na]|=1/2nd, and X,;=Z}; for |i—n+[na,]|=(1/2)né.
Arguing as in proof of Lemma 2 we deduce that with probability >
1-3¢,

Sllp [g—_—gaolgdnl-l—drm

ae . (a)

<2{ (670 + B ©)sup | Gu®)— 1} + 0™ .

(Here 4,, is for a>a, and 4,, for a<a,) Since Sld{ @)+ Hy (b)) =
)

0(0)=0(n""*) then the right side is O(n~**) in probability. Finally,
using (14) with (a, a+¢) replaced (a, @) we see that the desired result
follows from (17) and the fact that 7, =0(n""*) in probability.
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