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1. Introduction

Let X, X;,---, X, be a random sample of size n» from a continuous
distribution with mean p and variance ¢* and distribution function (df) F.
Let X..=X,.<-.--£X,. denote the order statistics of this sample.
Suppose we select the top k X-values. Then k! é (Xi.,—p) repre-

i=n—k+1
sents the average difference between the selected group and the pop-
ulation mean. This quantity expressed in standard deviation units is
called the selection differential and may be written as

D=L 3
k'"_—k— i=1§c+l (Xi:n—#)/a ’

“Selection differential” has long been a familiar term to geneticists
and breeders who often refer to it as “intensity of selection” (Falconer
[3]). It represents a measure of improvement in the given trait due
to selection. Hence it is useful in the construction of suitable breed-
ing plans and in the comparison of different plans in plant as well as
animal breeding. Of course it can be used in other kinds of selection
problems as well. In this paper we obtain some finite sample results
for D,,. An expression for the df of D, , is given and several bounds
on ED,, are presented. Numerical comparison of these bounds are
made for the standard normal population when the sample size is 10.
The last section considers the dependent sample case and develops
bounds for E D, ,. In our discussion we usually assume that x and ¢
are known and without loss of generality (WLOG) take u=0, o=1.

When g and o are replaced by X and S, the sample mean and sample
standard deviation, the resulting quantity will be called the sample

selection differential and is denoted by D,W

2. Distribution of D, ,
P (Dk,néx)zp (Xnoiitnt -+ - + Xy Ske)
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=§ P (X, point e+ Xom Sk | Xy emn=w)dFx,_, ()

where Fy, . is the df of X, ,.,.. It is known that (see David [2], p.
20) given X, ;.=u%, X, ri1mr -+, Xnn form the order statistics from a
random sample of size k¥ from the df G, given by

0 ’ t<u
Gd)=1{ F(t)—F(u)
W , t=u.
Hence,
(1) P(Dyn=o)=| _GEUeaMFrx, .. (u)

where G is the k-fold convolution of G,; that is, the df of the sum
of k independent identically distributed (iid) random variables (rvs)
each with df G,. As is evident from (1), there is no closed form ex-
pression for the df of D,, in general. However, in the case of the
exponential distribution, an expression for the probability density fune-
tion (pdf) of D, , can be given as discussed below.

Example. Let the parent distribution be Exp (1), that is exponen-
tial with mean unity. From the well known representation for ex-
ponential order statistics (see e.g., David [2], pp. 20-21) one obtains

Xi:né f; +-—ZL“+ LI +.—-Z"—k+l oo _|_ Zﬂ

1
2 M, .=
(2) b n—1 k k

k i=a—x+1

where Z;’s are iid Exp (1) rvs. Hence,
M, SZ¢+ -+ 25+ 24k

where Z*~Exp (i), 4;=(n—1i+1) and Z*, the sum of %k iid Exp (1)
rvs, is Gamma (k, 1), and are mutually independent. Consequently,

flk,n(u) = So fzf+---+z‘,‘;_,,(u'—x)fz*/k(x)dx .
From Feller [4], p. 40, problem 12, it follows that
n—k
fz;*+---+zz_,,(’UI—x)=1122' . 'Xn—kli § %,n-ke_zim““] , u—x>0

where
U= 41—2) * * (Ae1—A) Aip1—A) + + *(Aao—4)) .

Therefore,
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_k
(—1)!

n—k u
112' ¢ 'An—-k 2 w-i,n—ke—liu S LR A £/ ’
i=1 0

n—k 173
Frnd =22+ T 3 T So ¢t ekt

(f—1)!
u>0.

For a given k the integral can be evaluated explicitly and hence
an explicit expression for the pdf of D, is available, since D, ,=
(Mk,n—l)'

3. Bounds on the expected value of the selection differential

3.1. Bounds on f),,,,,

Let #,.,<2,,<:--<%,, be the order statistics from an observed
sample %, %, -, ,. Mallows and Richter [5] have established sharp
bounds for v,=k™! f_‘, Z,.., which is the sample selection differential

i=n—k+1
except for a change of location and scale. Their Corollary 6.1 (p. 1931)
states that

(3) grr—k 3 Svk§:§+\/n;ks

t VYn—17"

where t=max (k, n—k) and s’:%i(wt—ﬁ)z so that S*= nls’. As-
i=1

suming that S#0 (i.e., x,’s are not all equal), we obtain
n—k 1 < V—T

A —k n—1
D, =< [*=r [m=1
t +n S PENTk \/n

These bounds are sharp.

il

38.2. Bounds on E D, ,—Cauchy-Schwarz technique
Since p=0, =1, S:F“(u)du=0 and S: [F-{)du=1.
1

_ n _ 1 n 1 ,n!
EDen=g B EX""_So L:E@H_k' (-1 (n—1)!

w1 | P wdu
BT o P

0 Li=a—k+1 o \7—1
Al Fwran]”,

by the Cauchy-Schwarz inequality. Hence,
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(n— 1) (n— 1) 72
L | ud 1—1/\j—1
4 ED,,.< (15) — A\Cht 7AW k7 | S
(4) FrEINE) 2n—1 simment <2n—2

1+J7—2

Of course, E D, ,=0. Equality in (4) is attained if and only if (iff),
for some constant e,

First we note that for k<n, i‘. (n—-l

=k \2—1
the df of (n—k)th order statistic from a random sample of size (n—1)
from U(0,1) distribution, that is, uniform distribution over (0, 1).
Hence, the right-hand side in (5) is increasing if ¢>0 and consequently
there exists an F satisfying (5). For this F', E D, , is the bound given
in (4). However, a closed form expression for such an F is not pos-

sible. But, since SI[F“(u)]zduzl,
0

(n—-l)(n——l) -12

_l(n L | n 1—1/\j—1 1

¢ <k> 2n—1 i,1=§k+1 ( 2n—2 > )
147—2

Also, F7'(0)=—c¢ and F'(1)=c(n—k)/k. Hence, this extremal F
has bounded support, and is nonsymmetric.

)u"‘l(l —u)""* represents

Remarks. 1. The above technique has been employed for finding
bounds for E X;.,, 1=<j=<n in David ([2], p. 63) where it is noted that
the bounds are attained only when j=m=n. But, in the case of the
selection differential, or equivalently in the case of the average of
X krtms® * *y» Xa:n the bound is attainable for all k.

2. Let m(X) and ¢g(X) be two functions of a rv X where E [A(X)]
and E [g(X)]* are finite. Let EA(X)=0. Then sharper bounds can be
obtained for E h(X)g(X) by using the Cauchy-Schwarz inequality for
E (WX)—E MX))(9(X)—E g(X)) instead of the given expectation even
though the two integrals are essentially the same. This procedure
would yield a tighter bound than the one obtained by direct applica-
tion of the Cauchy-Schwarz inequality.

3. We can obtain sharper upper bounds for E D,, assuming a
symmetric parent distribution and using similar techniques. The Cauchy-
Schwarz inequality applied to some orthonormal systems can be used
to obtain tighter bounds and approximations for E D,,. These would
closely follow Section 4.3 of David ([2], pp. 66-70) and are omitted.
But, some nontrivial extensions of his Section 4.4 are possible and we
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pursue these in the next section.

3.3. c-Comparison and s-comparison

Let & be the class of all dfs which have positive continuous deriv-
atives on their supports. If F and F* are in & then we say that
F<F* iff F*7'F is convex on I, the support of F, and in such a case

F is said to c-precede F*. Van Zwet [7] has shown that if F<F*,
then
(6) F(E X,..)SF*E X}%,)

for all r=1,2,---,n, and for all » for which EX,., and E X}, exist
(see David [2], p. 73). We assume that both F and F'* have finite
variances. Since c-ordering is independent of location and scale, WLOG
we take both F' and F'* to be standardized dfs.

From (6) we have

g(E Xr:n)éE X;'::n ’ /r-_—'l, 2,"',’)?,

where g=F*"'F is a convex function on I. Hence,

(7) 3 JEX)S— 3 EXA.

i=n—k+1

1
k i=n
Let Y be a rv which takes values E X, _; 1, E X,., with prob-

ability 1/k each. Since g is a convex function on I and these expec-
tations belong to I, we have, by Jensen’s inequality

o(3 3 EX.)=gENSEgY)=7 3 gEX.).

kznk+

Hence, we have

8) oB(L 2 X.))sT 3 o(EX.)SE(+ S X3

k i=n—k+1 k i=n—k+1 i=n—k+1
Recalling that F and F* are standardized dfs it follows that
JED, )L 31 gEX.)SEDL).
k i=n—k+1
That is,

(9) F(E D, ,)<F* (% 3 gE X,.;n)) <F¥ED},) .

Again, from (6), we have

EX,..=¢g7'(EXY).
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Hence, proceeding on similar lines as above, and using the fact
that g~! is concave, one obtains,

10) FED.)SF (% 3 gBX%)SFEDL).

(9) can be used to give lower bounds for E D¥, whereas (10) is handy
if we are interested in an upper bound for E D,,. However, note that
the intermediate bounds are not easy to compute. If any of F and F'*
is not standardized, the corresponding selection differential has to be
replaced by the average of the top k order statistics. In that case,
one does not even need the finiteness of the mean, just the existence
of expectations of order statistics appearing in (9) or (10).

Applications. (i) c-comparison with the ¢J(0, 1) df gives, for any
(standardized) convex F,

FED)SF(T 31 (/n+1))<@n—k+1)2n+1)

for any concave F, the inequalities are reversed.
(ii) For a standardized df F having increasing failure rate, that
is for which F'(x)/(1—F(x)) is non-decreasing, we get

FE D,,)<1—exp(—E M,,)

on c-comparison with Exp (1) distribution. Here M, , is as given by
(2) and hence

2n+1

1.
2k+1 +

n 1 n+1/2
EM,,= 3 _,+1gg w7da+1=log

i=k+1 1 k+1/

Consequently, F(E D, ,)=1—(2k+1)/e(2n+1).

(ili) For the standard normal parent with df &(x), 1/&(x) is convex.
Hence, with F(x)=—1/x, x<—1 and F*x)=0(x), F'F* is concave.
Consequently, g=F*"'F is convex since g is increasing and its inverse
function is concave. Also, note that F' does not have a mean but
E D,, exists for k<n. EX,,=—n/(r—1), r>1 (David [2], p. 74) and
hence from (9) we have

That is,

a1y EDszl o ¢—1<i”1>g@—l<+>’ k<n.

k i=n—k+1
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s-Comparison.

Now, we consider a subclass S of symmetric distributions in .
Let F(xy—x)+F(x,+x)=1 for some 2z, and all z if FeS. If F and
F* are in S, then FfF* iff g=F*"'F is convex for x>z,, x€l, the

support of F. From van Zwet [7], we have, whenever F<F*,
(12) 9(E X,.,)<E X,

for all (n+1)/2=r=<n and all » for which E X*, exists (see David [2],
p. 76). We assume that both F and F'* are standardized. Consequently,
z,=0 and g(0)=0. Now, noting that E X,.,>0 for »>(n+1)/2 and that
g is convex for x>0, we get, on using arguments similar to those
leading to (8),

13  gEDWST 3 oBX)SEDL, kstD2.
i=n—k+

We now show that (13) is true even when k>(n-+1)/2. Since F is
symmetric about zero, for k>(n-+1)/2,

(14) ED,C,,.:-%E( >3 X,-;,.>=—2k;n-0+—1~ ST EX,,.

i=n—k+1 k k =41
From (12), since k>(n+1)/2,

(15) 71; S g(E XM)% 3 EXA .

i=k+1 i=k+1
Define a rv Z which takes values 0, E X, -, E X,., with prob-
abilities (2k—mn)/k, 1/k,-- -, 1/k, respectively. Since g is convex on the
support of Z, by Jensen’s inequality, it follows that

o(Zmotl 5 B X,)SEg2)
k k i=k+1

2k—m , 1 2
k +'];;“ i=§+~1 g(E Xt:n)

. since g is antisymmetric about 0. Now recalling (14) and (15) we con-
clude that (13) is true for k>(n+1)/2 also. This is recorded as a the-
orem below :

THEOREM. If F and F* are standardized dfs in S, and F<F'*,
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F(E Dk,,osF*(% 3 ® Xm) <F*(E D), where t=max (k, n—k).
=t+1

One can also show that

(16) F(E D, )SF (7 3 g(EX%))SFXE DL, .

k i=t+1
For nonstandardized dfs, the selection differential has to be re-
placed by M, ., the average of the top k order statistics.
s-Comparison of the standard normal df (F’) with the logistic dis-

tribution (F'*), where F*(z)=(1+exp(—zx))™', —oco<x<oco shows that
F<F* (see David [2], p. 77) and hence from (16) we have

aam E Dk,ng—li— i} O Y(FXE X}X) SO '(FXE M) .

i=t+1

It is known from David ([2], p. 78), E X*,= 72-1} 17! for r=(n+
i=n—r+1
1)/2 and hence

(18) EMk’”:-l_ Zn-“ EXz*n
k i=n
n——ll. ’ -
i=1 9
n o1 ,%01 n
—.{ ?i=7§c+l-'i—+i=k_'i— ’ 1<k§§
n n—1 1 k 1 n
—k—i=n—k—:]:— i'_‘%k_i- ’ E§k<n

on simplification.

Now we compare some of the bounds discussed so far when the
parent distribution is standard normal and the sample size is 10. For
this define the following:

UBI:% S O7(F*E X)) of (17),
i=t+1

UB2=0"(F*E My*,)) of (17) where E M, is given by (18),
UB3=Bound given by (4) using the Cauchy-Schwarz technique,
LB=-11; ila)“<%—_-1—>, an improved version of the intermediate
i=t+ n
bound of (11) which exploits the symmetry of the normal
distribution.
E D,, was computed using the table of expected values given by
Teichroew [6]. Column (8) in Table 4.4 of David [2] was used to com-
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Bounds for E Dg,, for =10

k E Dg,n UB1 UB2 UB3 LB

1 1.539 1.591 1.591 2.065 1.282
2 1.270 1.309 1.321 1.526 1.062
3 1.065 1.096 1.115 1.211 0.883
4 0.893 0.918 0.942 0.987 0.725
5 0.739 0.760 0.787 0.810 0.580
6 0.595 0.612 0.641 0.658 0.483
7 0.457 0.470 0.499 0.519 0.378
8 0.318 0.328 0.354 0.381 0.265
9 0.171 0.177 0.196 0.229 0.142

pute UB1. All these bounds and E D, , are given for k=1(1)9, n=10
in the table given above. Of the upper bounds, the ones obtained using
s-comparison perform well in comparison with the one which uses the
Cauchy-Schwarz technique. The lower bound is too low to be useful.

3.4. Dependent sample case

In this section we first consider bounds on the expectation of any
linear function of order statistics when the variables are dependent
and possibly nonidentically distributed. While doing so, we improve a
result due to Arnold and Groeneveld [1]. Then, we discuss the case of
the selection differential.

Suppose X, X,,:--, X, are possibly dependent rvs with E X,=g,
and Var (X,)=¢?. Let X,,<X,.<::-<X,.. be the order statistics with

tin=E X,.. Let X be the sample mean and szz—l— Sn_‘,l(Xi——X')z.
n i=

EsZ:—lﬁiEX _EX .i.z X;—(EX), since Var(X)=0
:l é (M+03) ,u ’ Where ﬁ:—l— th:l Zﬂim
n i=1 n n ’
= 33 [o+ (u— 7]

and the equality holds iff X=constant almost surely (a.s.). Also,
(tin—p)'=[E (X;n—X)SE (X;n— X )
and hence

zi)(#i:n—ﬁ)zégE(Xm —X)r= E(Z(X X))=nEs

where the equality holds iff X,,—X=¢, a.s. with SJ¢,=0. Hence, we



446 H. N. NAGARAJA

have the following:
(19) 3 (AP Sn B S 3 o+ (Al
Arnold and Groeneveld ([1], pp. 220-221) have shown that:

3 (pen—B'S 23 [+ (= Y]
and hence, for constants 2, 1<i<n, that
(20) 2 A(pa— | =[2 (Zc—Z)zll’Q[Z‘: (ia—p)1"

=[2 A=2)12 (@i+ (m—phH]" .

However, using the first inequality in (19), we obtain

(21) |3 A= PIS VR[S (4, —2)T(E )2

which is strictly better than (20) unless the sample mean is a constant

a.s. Also, if we start with 3 2,(X,.,—X) instead of 3 A(u..—p), use
the Cauchy-Schwarz inequality, and take expectations at the end, we
end up with still better bounds. To be precise, consider

> Zi()(i:n_f)lzlz (Zi—Z)(Xi:n—X)! B
=[S A= DTS (X X1
=y [2(A—2)1"s .

Therefore,
123 2(pen—p|=1E 2 1,.(Xtt,,j5()|§E 151 A Xon— X))
<VR[Z(4,—2)1"Es.
That is,
(22) |0 2 ten—)|SVT [ (4,— )] Es .

Noting that E s*=[E (s)]* we see that (22) gives a sharper bound
than (21), with equality of bounds occurring only when s’ is a constant
a.s. The only shortcoming of (21) or (22) is that we need to know
Es® or Es in order to compute the bounds. But, at the same time,
one can dispense with the knowledge of ¢¥’s which are needed in (20).

Finally, we consider a special case of dependence where X,’s are
uncorrelated. Then, it can be shown that

nE@)=5 [(u—ar+ai( 21|

and hence (21) reduces to
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13 Apn—pIS[E2 (Xi—I)z]l/Z[E ((ﬂt—ﬁ)2+<1—%>g§>]1/2

indicating clearly the improvement over (20). The above inequality is
dealt with in Exercise 4.5.1. of David [2].

Now we can assume that X,’s have the same mean p and the
same variance ¢ and turn our attention to the selection differential.
Here, sharp bounds can be obtained by dealing with (3), rather than
appealing to any of the inequalities derived above. Taking expecta-
tions in (3), we get

it s (L 8 Ka)ser PR B

where t=max (k, n—k). Therefore,

n—k 1 ES_S_ED,,,,,§ n—k Es )

(23) max (k, n—k) vYn—1 o k o

Since the bounds in (8) are sharp, these bounds are also sharp. (A
necessary condition is that s is constant a.s.). If Es is unknown, the
fact that Es<o can be used to replace the upper bound in (23) by

vYn—k)/k. In addition, if X,’s are uncorrelated,

Ess<vVEs=oavV(n—1)/n

* gives a slightly better upper bound, namely +(n—k)(n—1)/kn. But,
a good lower bound for E s/s is not possible without additional condi-
tions on the parent distribution.
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