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Summary

Mises functional is extended for the two-sample problem. It is
shown that the extended Mises functional also has the asymptotic prop-
erty given by von Mises (1947, Ann. Math. Statist., 18, 309-348) and
by Filippova (1962, Theory Prob. Appl., 7, 24-57) in the one-sample
case. Asymptotic behavior of U-statistic in the two-sample case, the
statistic of Cramér-von Mises type for testing homogeneity and so forth
are investigated as important examples of the theory.

1. Introduction

R. von Mises [7] derived the asymptotic distribution of a certain
class of functionals of empirical distribution function. Filippova [3]
investigated the asymptotic distribution for a wider class of functionals
of empirical distribution function. By using this theory we can give
the asymptotic distribution of many statistics (for example see Filippova
[3] and Aki [1]).

The purpose of the present paper is to extend this theory for the
two-sample problem. In Section 2 we extend the definition of Mises
functional for the two-sample problem. We obtain the analogous result
to the one derived by Filippova [3] in the one-sample case. In Section
3 three examples are investigated. The first one is the U-statistic in
the two-sample case. Though the asymptotic normality of the statistic
was proved by Lehmann [5], another proof of the property is given
here as an application of Theorem 2.2 of Section 2. The second one
is the statistic of Cramér-von Mises type for testing homogeneity. The
asymptotic distribution of this statistic is equal to the asymptotic dis-
tribution of the one-sample statistic. Rosenblatt [6] and Fisz [4] de-
rived this property. We, however, give another derivation as an appli-
cation of Theorem 2.3 of Section 2. The last example is an extension
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of the second one in a sense.

2. Results

Let X, X;,-++,X,,-++ and Y,,Y,,-+-,Y,,--+ be two independent
sequences of random variables, where X;’s (i=1, 2,---) are identically
distributed with a continuous distribution function (d.f.) F and Y,’s
(7=1, 2,--.) are identically distributed with a continuous d.f. G. F,
and G,, denote the empirical distribution functions of the variables Xj,
..+, X, and Y,,---,Y, respectively. Throughout the paper we assume
that there exists =0 such that n/m—2 when n—o0 and m—oo. Let
V be the totality of real functions of bounded variation. Suppose a
real valued functional T is defined on a subset o, of the direct product
VxV.

DEFINITION 2.1. The functional T is called v times differentiable
at the point (J, K) with respect to the set r (Co,) which is assumed
to be star-shaped at the point (J, K) if the following conditions are
satisfied :

(1) For any te[0,1], p=1,2,---,v and any element (J’', K') €,

ﬁ% TI(L—t)J+tJ", (1—t)K-+tK")]

exists.

(2) There exist functions TP[(J, K): xy,--+, x,], p=1,---,v; j=
1,---,27, which depend on (J, K) and p real parameters (z,---, x,),
such that for any element (J', K’) € r the relation

% TUA—8T+tT', A—DK+EK)]|
=" T e B w0 [T aM@)

holds, where M,,=[J'(z;)—J(z,;)] or [K'(x,)—K(x;)] depending on j and <.

DEFINITION 2.2. The functional T is called a Mises functional of
order v at the point (F, G) (F and G are distribution functions) if the
following conditions are satisfied:

(1) There exists a star-shaped set r,Co, at the point (F, G) such
that

lim P[(F,, G,) € rr]=1 when n— o0, m— oo and nfm—2.

(2) The functional T is v times differentiable at the point (F, G)
with respect to the set z,.
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(3) limP [n"’/” *sup |-

]—-0 for any ¢>0, >0

n

and p=1,---,», when n—o0, m— oo and n/m—2, where F¥=(1-1)-
F+tF,, GOo=1-t)G+tG,.

THEOREM 2.1. Let T be a Mises functional of order (v+1) at the
point (F,G). Let moreover TP[(F,G): -, x,]=0 identically in z,,
] xp fo’r j=1! 2:"'7 2p; p=17 2"") ”'—1’ then

w[T[(F,, G,)]—TI(F, ®]]
— ey & S_w. : S: TPUF, G): @iy, 2] 1T dH, (@)

Jj=1

converges to zero in probability as n— oo, m— oo and n/m— 2, where
Hy(x)=[F(2)—F(x,)] or [Gu(x:)—G(x,)] depending on j and 4.

ProoF. Consider the Taylor expansion of T[(F?, G®)] at t=0.

@1 TIES.GOI=TIF, Ol+E1) -2 T(FP, 6|+

+Ep)-L TiFe, Gsp)]\ )

e+ - TFe, G<‘>)1|

dtv+l

From the assumption of Theorem 2.1, we can see that

LTER, G| =0, p=12v-1,

Let t=1 in (2.1), then we have
TUF. GI—TI(F, G)]
dv
=1p!)—=—— o,
1/ )dt" TI(Fx

., T+ N2 rEe, G|

dtv+l
= |- § TPUF, G): @y, 2] [T dH )

+U+DH - TIES, 69|, -

tv+1

By (3) of Definition 2.2,
dv+l
V2 1 © (0
e+ D) - TIE, G|

converges to zero in probability as n— o0, m— oo and n/m—A. There-
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fore we have
W T(F, Gu)]—TI(F, G)]]
— () ;\;\1 S .. S:o TPUF, G): ®y,---, 2] ;]j; dH,(x;)

converges to zero in probability as n— oo, m— oo and n/m—2.

From Theorem 2.1 and Theorem 2.3 which will be given below,
the asymptotic distribution of w/*[T[(F,, G.)]—T[(F, G)]] is the distri-
bution represented by a sum of multiple stochastic integrals of inde-
pendent Brownian bridges. In particular the asymptotic distribution
is normal when v=1 as we shall show in the following Theorem 2.2.
Of course we can regard Theorem 2.2 as a corollary of Theorem 2.3.
But, because we can give an elementary proof when v=1, we will state
Theorem 2.2 first.

THEOREM 2.2. Let T be a Mises functional of order 2 at the point
(F, G). Then we have

n [ T[(F,, G,)]—TI(F, G)]]— N(O, 6% n distribution

as n— oo, m—oo and nj/m— i, where
o S” [TOUF, G): «]dF(x)— [S‘; TOF, G): x]dF(x)T

42 H: [TOUF, G): «]dG(x)— [Sl TOUF, G): ac]dG(a:)]z] :

Proor. By Theorem 2.1 it is sufficient to investigate the asymp-
totic distribution of

@2 |7 TOUE G): sdIF@) - F @)

oo

e g TOUF, G): 2)d[G n(x)—G(x)] .

—0o

From Theorem 4 of Filippova [3],

ni? Sm Tl(l)[(F; G) x]d[Fﬂ(x)—F(x)]—) S: Tl(l)[(F, G)' F_l(x)]dﬁ(x) ’

—~00

Wt (" TOUF, 6): 21d[Ga(e)—G@)l— | VT TOUF, 6): GTia)ds@)

in distribution as n—oc0, m— o and m/m—2 hold, where {5(t); 0=t
<1} is a Brownian bridge,

S: TOUF, G): F~(x)]dB(x)=N(0, d}) (in distribution),
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1 —_—
So VT TOUF, G): G'(z)ldf(x)=N(O, is}) (in distribution),

ai={ [TOUF, 6): F@)de—[ | TOUF, 6): Fia)ds|
and
o= S: [TOUF, G): G-()]]dw — [S: TO[(F, G): G"(x)]de .

Moreover each terms of (2.2) are independent. Therefore we get the
result of Theorem 2.2.

DEFINITION 2.3 (Filippova). We denote by L{(F) (F(z) is a dis-
tribution function) the set of functions f(xy,---, ) such that

S—m. . .S_w b (TR miu);[;lldF(le)<oo
r=1,--+,v, 5,=1,-++,v, I=1,.--, r, where j;, #j, for |,#I, and each of
the indices 4,, k=1,--.,v, takes on one of the values j, I=1,-.-, 7.

In the space L{(F') we introduce the norm

oo =) T 1/2
BRIRI PR CSERE R ) £ 2 CON

I lzpae=5 |

where the sum is taken over all r<y, and the r different among the

y arguments must be permuted in all possible ways. The space Iig”(F)
is a Banach space. If F(x) is the distribution function of uniform dis-

tribution on [0, 1], L{(F) will be denoted by Ly(D).

Suppose that {4,}, »=1,2,--+, {B,}, m=1,2,---, A and B are
random elements defined on a single probability space and their range
is some measurable space. Let moreover A, and B, be independent
and A and B be independent. If A, converges to A in distribution and
B, converges to B in distribution, then (4,, B,) converges to (4, B) in
distribution. Therefore if 8, and B, are independent Brownian bridges,
then (nV¥(F(F~'(u))—w), m"G, (G *(u))—u)) converges to (B,(u), f(w)) in
distribution.

Note that we can define multiple stochastic integral of two inde-
pendent Brownian bridges §, and B,, similarly as Filippova [3]. A func-
tion which is given in D’ and constant on the parallelopipeds b, <4<
b, E=1,00,v, (0=t<t,<---<t,_<t,=1 is some finite partition of
the segment [0, 1]) shall be called a step-function. Let h(uy,---,u,) be
a step-function. We define multiple stochastic integral of two inde-
pendent Brownian bridges for the step-function A(u,---,w,) by
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Blh, B 8= 33+ 3 Py, T 1B5(E) = B¥(t 0]

where k... is the value which the function A(u,,---, u,) takes on for
t1<w=t,, k=1,---,v, and g*=B, or B, depending on [ and 4. If
BF=p, for all I and 4,, then B(h, 8i, B;)=B(h, 8;) which is the multiple
stochastic integral defined by Filippova [3]. Let S(I»*) be the totality
of step-functions. We let (2, B, P) be the probability space on which
B: and B, are defined. Consider a linear operator L defined by

L: S(D")—— L2, B, P)
h +——B(h, b, B) .

Similarly as Section 2 of Filippova [3], it can be established that L is
a bounded linear operator. Because S(D*) is dense in Ly(D*), B(k, B, Bs)
is defined naturally for all &€ fq(D”). Suppose D[0, 1] is the space of

functions on [0,1] and 9 is the o-field on [0, 1] defined by Billingsley
[2] (Chapter 3). If we define

(th : D[Or 1]XD[O’ 1]_'_’R
(x! ?/) |'_—_—_—";L'h.(x’ y)zB(hy x, ’.Il) ’

¢on(x, ¥) is continuous except for a null set measured by the product
measure of P, and P;, where P, is the probability measure on (D0,
1], 9) induced by B; (i=1, 2). It is proved by the following inequality.

(2.3) |on(@, Y)—gnla’, ¥)|
=l|gn(x, Y)—n (T, y)|+|¢/’nn(w, ’!/)"‘/’nn(w'r ¥l
+l¢’hn(x,1 y’)~¢h(x" y’)l ’

where x, y, 2, ¥’ € D[0, 1] and h, is a step-function. Since ¢, is a bound-
ed linear operator with respect to h, the first and the third terms of
the right-hand side of (2.3) can be sufficiently small uniformly in the
arguments except for a null set by taking %, near h. If the distance
between (x, ¥) and (2/, ¥') is small, the second term is small by the defi-
nition of ¢, (¢, y). Therefore by using Theorem 5.1 of Billingsley [2],
we obtain the following Theorem 2.3.

THEOREM 2.3. If hj(uy,---,u,) € Ly(D"), j=1,--,2, the asymptotic
distribution of

oV

1 1 v
w3 S '“Soh’(u““" w) 1T dH(w)

Jj=1J0

18 the distribution of
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¥ (1 1 )
.12=1 So. a Socjhj(ul’. W) ;D;dﬁ}"(ui) y

when n— oo, m— oo and njm— A, where H(u,) is either [F,(F~'(u,))—w.]
or [G.(G™'(w:))—u;] depending on j and 1, BF(u;) is either By(u;) or By(u.)
depending on j and i, and where c,=i""*, m; is the number of [G.(G™'
-(w;))—u;] in the set {Hp(w); i=1,---,v}.

Remark 2.1. If T is a Mises functional, from Theorem 2.1 its
asymptotic distribution is equal to the asymptotic distribution of

@y )R T 6 e w) [TdH @)

for some v, where H,(z;,)=[F.(x)—F(x,)] or [G.(%x)—G(x;)]. Define
_ F(x) if H;(x)=F,(x)—F(x)
Hﬁ(m):{
G(zx) if H,(2)=G.(2)—G(x) .
Then the distribution of (2.4) is equal to the distribution of

e 27 7 T @) Haw, -, B [TdHAw) -

3. Examples

Example 1 (U-statistic for the two-sample problem). Let A(x,---,
Ta, Y1+, Y,) be symmetric in the 2’s alone and in the y’s alone. For
simplicity we assume that h(z,---, %, ¥, -+, ¥,)=0 if for some 1,7
(t#7) ®;=x; or y,=y,. Define
-1 -1
(3'1) Unm= (Z) <7g/> 2 h(Xil) Tty Xia) le,' * ij) ’

where the summation is extended over all subscripts
1S4< < L=n; 1S55,< - <fHhp=m.

If we assume that

el W o g 0)F @) - dF @)AG() - -dG@) <oo

asymptotic normality of U,, holds as follows. Note that
Upn(=T(F?, G)])

=Sl' .. S: <a!b! (Z)(’,’f»—ln“m”h(xx,- ey Do Yio s Yn)
XAF(2,) - AF(2)dG (Y1)« - -AGn(Ys) -
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T{(F,, G,)] is a Mises functional of order 2 at (F, G), and it holds

i_ (OO |
SR, GO

oot (2 () e b

Yoy U)F(@)- - dF (@, )G, - -dG(w)|
xdF@—-F@l+ |~ {{" " st 2w,
Yoo+ s U )F (@) - dF@)AGW,)- - 46w,
xd[G,,,(a:)—G(x)]] .
If we apply Theorem 2.2 with

roe, 1= 0 3) ) e e
Y+ os Yo)AF () - - dF(,_)dG () - -dG(Ys)

£, 0 1= {a2) ) o [ b
Yoo+ Yo-)AF (1) - - dF (2, )dG(yy) - - -dG(Yo_1)

we can see the asymptotic normality of U,,, that is,

o

nl/Z[Unm_ S“"

—o0

-"S_ h(wl,"'y Loy Y15°°*» yb)

XdF(@): - dF@)6W): A6, |

converges to N(0, ¢%) in distribution as n—o0, m— oo and n/m—2,
where

oo

=t Var [|7 (7 W oo g v 9 @) A6 |

—oo

+ b Var [S:: .. S:c (- -+, 24, Yiy, s Yo)dF () - 'dG(yb—!):l .

Example 2 (The statistic of Cramér-von Mises type for testing
homogeneity). We can mention the following statistic (3.2) as a test
statistic for the two-sample problem.

@2 {7 (@) Gl T TG -

The next theorem is well known.
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THEOREM 3.1 (Rosenblatt [6] and Fisz [4]). The statistic (3.2) has
the same asymptotic distribution when n— oo, m—co and njm— 2, as
the one-sample von Mises statistic under the assumption “F=G”.

We will prove Theorem 3.1 by our method. We denote the for-
mula (3.2) by (mm/(n+m))T[(F,, G,)]. Then the following (3.3), (3.4),
(8.5) and (8.6) hold.

3.3) —(%T[(F,so, GO)]

= S:o 2[F{O(2) — GO(@)] [(Fo(x) — F(x)) — (G nl(2) — G(2))]

4| Fo@)+ T GO@)]
% n+m (x)+n+m (@)

+|7_IFe@ - 6@ L (Fuw)— F@)
—oo n+m
m
+— (Gu() =G|
(3.4) —ddTT[(Fn“), G ~0=0 , under the assumption “F=G”,
L OO
@5 LT(Fe, 60

=" 2 @)~ F @)~ Gule) GNP

xd[ 2 2P+ G52 |

+|7_ 4P - G0E@NI(F @)~ F@) ~ Gale) —C@))]

xd[n+ (F.(x)— F(x))+ (Gm(w) G(x))]

36 -LTIF,

dt2
= S 2[(F(2)— F(2)) — (Galz)— G(2))dF(2)

=[" 2F@-FErFE
= AF.@—F@NGa@)~CdF @)

+|”_ 26— G@IdF @)
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ey

"7 20, 2aF. ) - Fa)IF ) - Fan

—o0

49(y, 2)A[F.(y) — F(9)Id[G(2)—G(2)]

29(y, 2)AlGn(y)—GW)IG.(2)—G(2)] ,

SN
LI
where

00, =" tm UMt AF (@)

=1—F(max {y,2}), under the assumption “F=G?” .

By using Theorems 2.1 and 2.3, we can see under the assumption
((FZG ”,

3.7) nﬁmm T((F,, Gl

—’S S h(w, v)(3/(1+2))dB,(w)dB,(v)
— S: S: h(u, v)(2AV2/(1+ 2))dB,(u)dBs(v)
+S S h(w, v)(1/(1+2))dB(u)dB(v)

in distribution, where h(u, v)=g(F ~‘(u), F~'(v)), B, and B, are independ-
ent Brownian bridges, when n—oc, m—oc and n/m—2i. Note that
the right-hand side of (3.7) is equal to

@8 [ h DRI+ D8~ A+ )80
XL+ 1)) ()~ (L(L+2) 80} -

Moreover (1/(1+2))*8,—(1/(1+2))"*8, is a Brownian bridge since B, and
B; are independent. The distribution of (3.8) is equal to the asymptotic
distribution of the goodness of fit test statistic of Cramér-von Mises
type (see Filippova [3]).

Example 3. We shall consider the following two statistics as an
extension of Example 2.

@9 | [F@)-F@)Fe),

nm? (= ‘ n m
(310) I " (@) G| 2 RG]

We want to use (3.9) as a statistic for testing goodness of fit and to



use (3.10) as a statistic for testing homogeneity. Unfortunately, we
can not use them as test statistics for the present, because we do not
know the distribution function of the asymptotic distribution of (3.9)
and (3.10), though it is true that the asymptotic distribution of (3.9)
and (3.10) exists and does not depend on F' under the null hypothesis.
Anyway we deal with this as only a mathematical example since this

ASYMPTOTIC BEHAVIOR OF FUNCTIONALS

is a very interesting example for Theorem 2.3. We let

T[(F. Gl =|_IF(@)—Cu(o)ld]

m

F
() + g

n+m n

Gm(x)] .

Similarly as Example 2, we get under the assumption “F=G”

(3.11)

(3.12)

(3.13)

(3.14)

d
L T((F®, 6P
S TR, G,

at

L T((F®, GO
dt3 n 9 m A

dtt
=4!

B riF©, G

d4
— TIF, G2)]

| [(F@)- F@) ~ Gal)—G@)IdF @)

~4[|” E@-F@) i@

—4|" (F@)— F@)(Gal)—Ca)dF ()

+6

ey

l (Fu(x)— F(2))(Gn(x)—G(x))dF ()
4" (B~ F@)(G.0)~G@)ar @)

+ S“’w (Gm(a;)—G(x))‘dF(x):l

=4[{” " {717 o ve v wadl P~ Fwo)

X A () — F )AL () — F ()AL o) — F ()]
— {7 A7 ot v v wddIF @)~ F @)
X A[F () — F (y2)10[F(ys) — F (¥:)18[G () — G(4)]
6 |

g_w 91 Yo Y3 YNALF(y1)— F (yy)]
X A[F(y2) — F (y2)1A[G n(¥s) — G(¥n)1AGn(y) — G(¥)]



402 SIGEO AKI

—4 7 7 ot v wddIF )~ F i

X A[Gn(Y2) — GG (Y:) — G(¥:) BIG () — G(y4)]
+ Sm Sjw So_:o Sjm g(yb Y2 Y3 y4)d[Gm(yl) — G(%)]

—oco

Xd[Gm(’.‘lz)"G(yz)]d[Gm(?ls)“G(ya)]d[Gm(y4)"G(?h)]] :
where
9y Yo Ys )= S: Ao, 2 (YD) en, 22 Y2) (0,2 Ys) A (=0, A (Y1) A F ()

=1-F(max {yy, ¥: ¥s ¥s}) -

By using Theorems 2.1 and 2.3, we get under the assumption “F=G”.

3.15) "™ _pyE G,
(8.15) o) [( )l

— 01 1, e 0w w0 (2114 2 e )
S S S Rttty gy 20) (7L 2))EB1 (1) B 1t2) Btz ) B ts)
S S S h(wy, U,y Us, u4)(l/(1+1)Z)dlgx(ux)dﬁl(uz)dﬂz(ua)dﬁz(m)

—4

A}
S
+6 |
-4,

0
1
0
1
0
1

S S S R, Uy Uy ) (AVH(L 4 2)) By (1) Bi(02) A Bof(ts) A B ths)
+ So SOS S Ry, sy Us, Uy) (1) (14 2)2)dBo(Uy)d Ba(2)d Bo(Us)d Bo(ths)

in distribution, where

h(wyy s, Us, ) =g(F " (uy), F (), F (), F~(ws))
=1—max {u1, Uy Us,y u4} ’

B, and B, are independent Brownian bridges, when n—o0, m— o and
n/m—i. Note that the right-hand side of (3.15) is equal to

1010101
3:18) | 1§, | Aun s, v, w31+ 238100 = (LI(L+ ) i)

X A[(2/(1+ 2))"By(uz) — (1/(1+ 2))"*By(uz)]
X A{(2/(1+2))"By(us) — (1/(1+ 2))Bo(us)]
X A[(/(L+2))By(u) — (1/(1+ 2))'*Bo(us)] -

It is easily seen by Filippova’s results [3] that the distribution of (3.16)
is equal to the asymptotic distribution of (3.9) under the null hypothesis.
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