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Summary

The conditioned central limit theorem for the vector of maximum
partial sums based on independent identically distributed random vec-
tors is investigated and the rate of convergence is discussed. The
conditioning is that of Rényi (1958, Acta Math. Acad. Sci. Hungar.,
9, 215-228). Analogous results for the vector of partial sums are ob-
tained.

1. Introduction

Let Xi,---, X,,--+ be a sequence of p-dimensional independent iden-
tically distributed (iid) random vectors defined on the same probability
space (2, A, P) with distribution functions (df) F(x) and such that

(L)  EX=p and EX—p)(Xi—p)=F=(s,), say.

Let p;; denote the correlation coefficient between X and X, for all
1#3, 4, 5=1,---,p, i.e., p;; is the correlation coefficient between the
ith and the jth coordinates of X,=(Xy, -, X,1). Further, for i=1,

..o, plet S,=3] X,, and set Sk=max S, Write
ji=1 1sjsn

(1.2) S,=(Si++, S,y and SF=(S,---, k).

When p=1, Rényi [5] established that for any Be .4 with P(B)>
0, P[S,—np=oxy/n | B]—d(x) as m— oo, Next, let

(1.3) 4.(B)=sup |P [S,—np=ory/n|B]—0(z)|

where @(-) denotes the df of the standard normal variate. More re-
cently, Landers and Rogge [4] gave a counter example demonstrating
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that there does not exist a sequence of real numbers {5,} such that
8,— oo and 8,4,(B) remain bounded for each B¢ 4. It is not surprising
that the rate of convergence should depend on B. Landers and Rogge
[4] gave an interesting inequality for rates of convergence of 4,.(B)
that depends on B and used it to give an elegant proof of convergence
of (1.3) to zero.

On the other hand, the rate of convergence in the multidimen-
sional central limit theorem 1is a relatively new area of investigation.
Sazonov [6] and Bikyalis [3] showed that if E|X,[*’<oc0, 0<3Z1, i=
1,-.-,p and if X, has a nonsingular covariance matrix, then

(1.4) d,=sup |P[S,,—nu=oww/n, -+, Sp—ny,
) So@/ 1] —0r(X)|=0(n""") ,
where R=(p,;) is the correlation matrix of X;. Assuming that g, >0,
4=1,--., p, Ahmad [1] showed that under the same conditions of Sazonov
[6] and Bikyalis [3], and for any 0<8<1,
(1.5) d¥=sup |P[Sk—ny=<oxwm, -+, S—npy,
) < 0,8,/ T 1~ 0u(x)| =0(n~"2) |
For any B € ] such that P(B)>0, define
(1.6) 4,(B)=sup |P[{Sn—nm=o@y/n,: -+, Sp—mnpt,
S0,0,/ 1} B]—0x(x)| ,
and
A,T(B)zsgp IP{Sk—nm=<oxymn,---, St—npy,
<02,/ T} | Bl—0x()] .

The purpose of present note is to invetigate the conditions under which
4,(B) and 4¥(B) converge to 0 as n—oo for any Be J and discuss the
rate of convergence.

For ease of presentation we shall only deal with the case p=2
and let @(x;, x,) denote the bivariate standard normal df (i.e. bivariate
normal df with E X;=0, Var X;=1, and cov (X, X;)=p, the correlation
coefficient) and @.,(¢,,) denote the df (probability density function (pdf))
of the univariate standard normal.

2. Conditioned CLT for partial sums

Throughout this section we shall assume that p=2. Let &, denote
the o-field generated by (X, Xi), -+, (X, Xo)' k=1,2,.+-. Write
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(2.1) 4,(xy, 2,)=|P [Sm—n#lélﬁxn/%-; SZn—n#z
S0/ n]—0(xy, x)| ,
(2.2) 4.(xy, 2,| B)=|P [Sln—nﬂléalmlﬁy Szn—'n/lz
<o/ 0 | Bl—0(x, 25)] ,
and
(2.3) 4,(1, B3| F ) =|P [Sp—np S0/, Spn—npty

S0t/ W | F ] —0(xy, 7)) -

We start with the following inequality which is a bivariate exten-
sion of Theorem 1 of Landers and Rogge [4] whose method of proof
utilizes a conditioning device that enables us to establish an appropriate
bound.

INEQUALITY 2.1. For all n>Fk and all (x,, x,),
(2.4) A,,(x,, Xy l gk) § Sup A,,_,C(xl, xg) + CI ISlk —_ k‘lll V(n'—k)l/z
Zy, %9
+ G| Su—Fkpl/(n—k)*+Cy(k[(n—Fk)) ,

where C;, C; and C; are positive constants dependent on ¢, ¢, and p
but independent of n.

PROOF. Write Si,(n—k): i Xij! ’i:l, 2. Since Silc and Si,(n—lc) are

J=k+1

n—k
independent and S;._» and Si,_,,=> Xi; have the same distribution
j=1

we have
(2.5) 4 (%, 2| F k)§§u£) 4, (2, 25)
o 0121/ 7 — (S, _k/’l) ,
+ ‘ < 0‘1‘\/’)’& - k
e/ WSk ) _g
0'2’\/’”/—10 (xl’ x2) )

Thus we need to show that the second term of the upper bound of
(2.5) is less than or equal to the sum of the last three terms of the
‘right member of (2.4). Note that

mxn/%_—(sm—kyl) ”szﬂ/%_—(szk—kyz) _
l@( avn—k ’ o/ T—k ) O(xy, 25)

gIln—l_IZn_{-ISn-l_Ln ’

where
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I1n= Iq)< Glmlﬂ/%_(slk—kﬂ!) . ngp\/-’ﬁ:—(szk—kpz) )

avn—k avVn—k
_ n szﬂ/ﬁ—(szx—kﬂz)
¢<ml \/n—k' oVn—k ) ‘ ’

o [ofe 2 2ol Sl

LFI@(x,, xz\/nnk>——@(xl, x2)| :

Now, it is not difficult to show that

n _(Sw—kﬂl)
¢<x1 n—k .m/n—k’w>

0929V 1 —(Sqp—kpg))/agVn—k

@6) L=|

—oco

—-@(w, \/g, w) l¢u)(w)dw

Dy, ((xx n__ Slk_k#l
n

S(uzzzaﬂ—(sn—kpz))/az\/ﬂ

—eo -k  owWn—rk
o) 1500 o[ ) )
<G, [Sie— k|
o Vn—Fk ’

since |@qy(x+e)—Dy(x)|<Cle| (see Theorem 1 of Landers and Rogge [4]).
Similarly we can show that I,<Cy|Sy—kwm|/vn—Fk), where C, and C,
depend on ¢y, g, and p but are independent of n. Next,

@mn IL.< S_:ﬁ " ( v "/f/’;:’;)z —pw > — 0 ( f}i’%) ‘¢<1>(W)d'w

S )

since (Vn/(n—k)—1)<k/(n—k) and |@q(ex)—Pu(x)|<Cle—1||x|e"2 <
Cle—1]|; similarly we can show that I,,<Ck/(n—k)), where C; and C,
are positive constants that may depend on ¢, and o¢,. The desired con-
clusion now follows.

Using Inequality 2.1 we can now establish rates of convergence for
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4.(2y, #,| B) for B¢ F, such that P(B)>0. Let 4,(B)=sup 4,(x,, ;| B).
.‘Dl,lz

THEOREM 2.1. If 4,=0(n""?), 0<3=1, and if for each r such that
2=5r=<2+49, E| X,y <oo, ©=1,2, then there exists a constant C, which
depends on o, o, and p such that for all Be F, with P(B)>0,

2.8) 4(B)=C.2 @) (£)".

Proor. Using Hdlder’s inequality,

(2.9) sup |P[Su—nm=ZoxW/n, Sp—nm=ox,/n, Bl—0(x,, ;) P(B)]

Ty

=[P B 14ZDI- »

where 4,(F,)=sup 4,(x,, x,|F,). But using Inequality 2.1 and Minkow-
ski’s inequality we see that

2.10) IIA,,(%)nédn-kJr—% EV7| Sy —pul”

C 1r — T ( k )
t g B Su—kel Gl )

where Ci, C,, and C; are positive constants dependent on ¢, o, and p.

But since sup (1/v'k ) EY"|S,—ku|"<co, i=1, 2, the desired conclusion
k

follows by taking without loss of generality k=<(n/2).

Another consequence of Inequality 2.1 is a multivariate extension
of the Theorem of Rényi [6]. Note also that the proof follows that of
Landers and Rogge [4], Corollary 3.

THEOREM 2.2. Let (X11, Xgl),"', (le in) be deﬁned on the p’rob-
ability space (2, A, P) and let Be J such that P(B)>0. Then

(2.11) P [Sln'—nlhéﬂlxlﬁ, Sgn—npg_S_azsz.ﬁ ] B]“—’Q(xl, (Ug) ,
as n—oo .,

ProOF. Let F.=0((Xy, Xu),* ) (Xin) Xu),-++). Then there exists
< ,-measurable functions {,, 0=¢{,<1 and E|P(B|¥.)—,|—0 as n— co.
Thus

[P [Sn—nu=oxi/ 0, Sp—np<o@y/n, Bl—0(x,, %,) P (B)|
SIP[Sn—nu=ox/n, Su—nm<oxw/n, P (B|F.)]
-P [Sln—nﬂléalxlﬁy S2n—nﬂ2§02x2\/—'ﬁ'—! Cill
+P[Sn—nm=Soxvm, Spn—nm=ox/n, §i]
—O(xy, @) B[ +0(2,, 2,)|EL—P (B)]
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§%+E {C|P [Su—nu=<Soxv/n, Sy—npm=owy/n |F,]
— (x4, %)}

g-%u |P [Sin— 1 S0 @/ T, Sou— Nty S 030/ W | F]
— (1, )] [l

+An-k+Cl( k )1/2+Cz< kk>§$;

<
n—k n—

£
2

for sufficiently large », using the multidimensional Central Limit The-
orem and Inequality 2.1 with Minkowski’s inequality.

Remark 2.1. We remark here that if E|X,["’<oco, 1=1,2, 0<
0<1, then 4,=0(n"*?%), 0<8<1. This result for =1 is given by Sazonov
[6] and for 0<3<1 is due to Bikyalis [8]. Thus Theorem 2.1 is valid
if BE|X, " <o, t=1,2. The extension to any p>2 is immediate.

3. Conditioned CLT for maximum sums

In this section we assume that E X,;=p,>0, i=1,2. Define 4}(x,,
x,), 4X(xy, x| B), and 4¥(xy, 2,|F,) as in (2.1)-(2.8) with S,, replaced by
Sk=max S,;, 1=1,2. Note that

1<jsn

(3°1) Siﬁ:max {Szﬁ’ ik+S1=:',((n—k)} ’ i:]w 2 ]

n

where S¥,_»= max S;,_» with S,._.o= > X,;, 1=1,2. Further,
k+isjsn J=k+1

let y,=%0/ W +np, 1=1,2. Thus
(3.2) |P[SE=Yin SE=ZYon| F il —O(21, a,)|
=|P [S;':(n—k)éyln—slki S;f(n—k)éy2n'—s2k’ Sf’iéylm Sﬁé%ﬂgkl
—0(xy, 2,)|
S|P [S¥a-0=Yin—Su SFao =Ym—Sul| F]—P(2,, x2)|IAn’k
+(1—1L, )0y, 2)=I,+L,, say,
where A, .= {S=<¥u, S¥=<¥.} and I, denotes the indicator function of

a set A. But since (X, Xy),- -+, (Xin, ) are iid then it is easy to see
that

) < f% Y= Su——k)pts  You—Su—(n—F)ps —Q
(33)  Lsdr.t|of e, M ) -0, )

Si—k " Sy—k
. ‘@( n__ O =% \/ _Pu— Ry
a x‘\/n—k on—k "\ n—k aNn——k>
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—O(xy, x3)

<4%, lsnk k| | See—Fopss| k ’
BT N +C< —k)

as proved in Inequality 2.1. Hence we arrive at the following bivariate
extension of Theorem 3.1 of Ahmad [2].

INEQUALITY 3.1. For any n>k and all (z,, x,)

(3.4) L@y, 7| F) S 45 +Cy ‘Sy”k,’j" +G 'Sj" _k,’f'
k ¢
+Cs<n_k>+P(An,klgk)!

where C,, C, and C, are positive constants dependent on ¢, g, and p
but are independent of m, A° denotes the complement of a set A and
A, = {SE=Yn SX=¥:x} where ?/in=0'ixn/_”_b+n#i, 1=1, 2.

Again we shall use Inequality 8.1 to obtain a rate of convergence
in the conditioned CLT for maximum partial sums. This is done in the
following theorem.

THEOREM 3.1. If 4¥=0(n"""*), 0<0<l, and iof for any r, 2=5r=<
249, E|X, /<o, 1=1, 2, then there exists a positive constant C, which
depends on oy, o, and p such that for all Be SF, with P(B)>0,

[\
(3.5) 45(B)<C,(P (B)) w(ﬂ ,  0<3<l.

PrOOF. Note that by using conditional expectation and Holder’s
inequality we have for any (x,, ;) and n>k,
(3.6) |P [Sﬁ,éﬂlle%“Fnﬂl, S;ﬁéﬂ'gf”g‘/%""’ﬂyz, B]—¢(xl, xg) P (B)l
éE {IP [Slﬁéylny Sﬁéyzn | gk]—@(m‘,, xz) | P (B)}
=[P BV 4*(@y, x| F - -

Now, applying Inequality 3.1 to 4*(x,, 2,| <) and using Minkowski’s in-
equality we see that the last upper bound of (3.6) is less than or equal to

G

[P(B)](r l)/r{A: Ic+ k El/rlSlk—k#ll + C k El/rlSZk_k#ZI

Vu Vn—F
() B [P (45,0 F 10, )

<[P (B)]=~"" {0((n—k)"/2)+c.< n_lik >1/2+C5 ( nfl&)
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+P(AS )0, xz)}

<[P B O~k +C (-2 )”

+33 (P ISEZY}00(2))] ;

since EV" [P (A2 | FOISE[P (A | F)]=P(A,). Let us examine the last
terms in the above upper bound. Let

Jin={P[SEZ2 Y]} *+D ;) , 1=1,2.

We distinguish between three cases
(i) If x,=0, then
Ju=1{P [Sﬁczxiaiﬁ'l'nﬂi]}1/(2+6)¢(l)(xt)§ {P [S;;.Z_nﬁi]}!/(2+a)@(l)(xi)

<c, (ﬂ)tl(zw)écz (_’f_> ’ i=1,2.

- ,n2+t) n
(i) If —py/m[(20)=<2,<0, then

Tz [Pssz 2]} 0@y =ai(£),
2 n
as in case (i), i1=1,2.

(iii) If x,<—wmv/7M/(20,), then
Jf.né@(l)(xi)ém(l)<_ﬂ2i-h——‘> =0(n—3/2) ’ 1=1,2.
Ty
Hence in all cases we have that J,=0((k/n)*). The desired conclusion

follows.

Next, we give a conditioned central limit theorem of maximum
partial sums. The proof of the next theorem is modeled after that of
Theorem 2.2 and hence is omitted.

THEOREM 3.2. Under the conditions of Theorem 2.2,
(8.7 P[Sk=oxiv/n +um, SkZox/n +pm|Bl— (2, ;) as n—oo .

Remark 3.1. Ahmad [1], Theorem 1, has shown that if 4,(n™"?),
0<3=1, then 4*=O0(n""?), this, in conjunction with Remark 2.1, leads
to showing that if E|X,}*’<o, i=1,2, 0<d=<1, then Theorem 3.1
holds.
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