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Summary

A homogeneous spatial point pattern is regarded as one of thermal
equilibrium configurations whose points interact on each other through
a certain pairwise potential. Parameterizing the potential function, the
likelihood is then defined by the Gibbs canonical ensemble. A Monte
Carlo simulation method is reviewed to obtain equilibrium point pat-
terns which correspond to a given potential function. An approximate
log likelihood function for gas-like patterns is derived in order to com-
pute the maximum likelihood estimates efficiently. Some parametric
potential functions are suggested, and the Akaike Information Criterion
is used for model selection. The feasibility of our procedure is demon-
strated by some computer experiments. Using the procedure, some
real data are investigated.

1. Introduction

Recently the study of statistical analysis for multidimensional point
process (or random point field) has been rapidly developing (see Fisher
[7] and Ripley [18] for extensive references). The test of the random-
ness of spatial patterns (i.e. test of Poisson random field as the null
hypothesis) has been discussed by many authors through some non-
parametric approaches such as quadrat and distance methods for quite
long time. The second order analysis, which was extensively developed
recently (Bartlett [2], Ripley [18], Vere-Jones [22]), would also be among
the familiar available existing methods. Modelling of clustering Poisson
fields is also developed by making use of the probability generating
functional (Vere-Jones [21]). However, this does not seem to be well
linked with the likelihood procedure. In fact the likelihood function
of the clustering Poisson field is too complicated to manage unless the
cluster centres are known (Baudin [3]).

Then, what is a key to the likelihood analysis? For one dimen-
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sional point process it is a conditional intensity function, through which
a variety of statistical models can be proposed (see Ogata [15] and [17],
for example). It is suggested in this paper that a pairwise potential
function could play a similar role to the conditional intensity. This is
because the likelihood can be defined, as we see in Section 2, through
the Gibbs distribution for the configuration of points, which is char-
acterized by the potential function. Thus we parameterize the function
so as to obtain the maximum likelihood estimate. Modelling of spatial
patterns which takes interaction among points into account was con-
sidered, for example, by Matérn [10], Ripley [18], Besag and Diggle [4],
Hasegawa and Tanemura [8], Diggle [6] and Tanemura and Hasegawa
[20]. Nevertheless, the maximum likelihood procedure has not so far
been developed.

In the next section the likelihood function is introduced. Then, in
Section 3, the Metropolis’ simulation method is briefly reviewed in or-
der to obtain the equilibrium spatial point patterns, as well as to esti-
mate the value of the partition funetion. In Section 4 an approximate
log likelihood function is derived under the assumption that an observed
spatial pattern belongs to gaseous equilibrium configurations with low
density. Some examples of parameterized pairwise potential functions
are suggested in Section 5 and the model selection procedure by using
AIC is explained in Section 6. Then, in Section 7, some numerical ex-
amples are given to illustrate our procedure. Some real observations
are considered using our method in Section 8. The final section is al-
lotted for further remarks.

2. Likelihood

Suppose that we have a homogeneous spatial point pattern in a
finite region V. We regard this as one of the thermal equilibrium
configurations under some interaction potential energy which may or
may not be realistic in the sense of statistical mechanies. Further it
is assumed here that the equilibrium distribution of the configuration
is characterized by a pairwise potential function. We are, then, inter-
ested in estimating the form of the function from an observed spatial
point pattern.

Consider a family of parameterized pairwise potential functions

(1) {Dr); 6 €6}

of the Euclidean distance ». Let a finite set of points X ={X,; n=1,
2,-++, N} be observed in the region V. Then the likelihood of the
potential function @,(r) is given by the Gibbs canonical ensemble (see
Feynman [6], for example)
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(2) L(X; 6)=exp {— U(X; 0)}/ Zx(0) ,

where U(X;60) is the total potential energy which is assumed to be
given as a sum of pairwise potentials, i.e.

(3) UXi 0= 5 0(X—X.),
and
(1) Zy0)=\ , exp {(— UX; 0))d X, --dX,

is the configurational part of the classical partition function of N inter-
acting particles. Here we have set @,r) instead of @4r)/(k;T) where
T is the temperature and k; is the Boltzmann’s constant. This means
that the potential function here is to be estimated together with the
effect of the temperature. To avoid the boundary effect, we assume
that points are distributed under the periodic boundary conditions (i.e.
on the two dimensional torus) from now on.

3. Monte Carlo simulation

To give some feeling of the relation between a pairwise potential
and its equilibrium point patterns, let us review a simulation pro-
cedure which uses a particular type of random walk known as a
Markov chain. The simulation was originally devised by Metropolis et
al. [12] and developed by Wood [23] and others for the study of a
liquid phase.

Consider a set of particles, interacting according to a certain po-
tential function, on a square V with periodic boundary (i.e. V is iden-
tified with a torus). In order to make the situation simple, assume
that the square is discretized into an M XM square lattice on which
N particles are attached. Then each configuration of the particles on
the lattice is counted as one of the states of a Markov chain where

2
the total number of possible states is B= (%) The Gibbs distribu-
tion (2) is also discretized into probabilities {u;; 1=1,2,..-,B}. In

essence, then, the Monte Carlo procedure here is simply to select the
B

transition probabilities (P;;) which satisfy > u,P;;=u; for all j=1,2,
i=1

-+, B and that the n-step transition probability P’ converges to the
given equilibrium probability u;,. The most commonly used transition
probability is
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0 if 7 not in W(3),
P,=< 1/K if jeW(), j#1, and w,=u,,
(5) (u;lu)/ K if je W) and u;<u,,
and
P,=1->P,,

J#i

where W(z) denotes a specified set of neighbour states 7 of state 4, such
that < e W(3), v € W(j) if and only if j € W(i), and K denotes the num-
ber of states in W(%).

The Markov chain defined by (5) is realized for our purpose in the
following manner: Assume that at time ¢, the state of the N particle
system is X(t)= {X,(t)=(z.(t), ¥.(t) e V; n=1,-.-, N}. A trial state
X'(t) is then chosen randomly and uniformly (i.e. with equal probability
1/K for each state) from the neighbour set of states W(X(t))=W.,.
For example, the sets W, might consist of all those states j for which
the coordinates (x.(t), y.(t)) of a randomly chosen particle n» (n=1, 2,
<+, N) lie in the set {(x.(t)+Fk, y.(t)+m); |k|,|m|=0,1, -+, k..,} Where
knex 1s a certain integer, while all other N—1 particles have the same
position as in state X(t) (K=(2k,.x+1)* in this case). The corresponding
value of the probability w'(t)=L(X'(t); ) in (2) is then calculated and
compared with w(t)=L(X(t);8). If «'(t)=u(t), then without further
ado the next state is taken as X(t+1)=X'(t). If ¥/ (t)<u(t) then we
obtain a uniform random number 0=¢<1 and (i) if §=u'(t)/u(t), then
Xt+1)=X'(t); (i) if &>w'(t)/u(t), then X(t+1)=X(t). It is quite
important to notice that the common normalizing factor Z,(4) in (2)
can be cancelled out in the above comparisons. That is to say, we can
put u(t)=exp {—U(X(t); 6)} without loss of generality.

Thus, starting from an initial state X(0) we have a state X(T)
for sufficiently large T as a realization of equilibrium under the Gibbs
distribution (2) which is characterized by a prescribed potential func-
tion (1). Furthermore the time average

T
(6) 1 2 exp {UX(®); 0))
can be a good estimate of |V|¥/Zy(d), since
(7) lim L 3 F(X(t)):S FX)L(X; 0)dX,- - -dXx
Tow T i=1 vy

for suitable function F' of the configurations. Therefore an estimated
likelihood value for a fixed 6 is
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(8)  L(X;0)=L 3 exp (UX@®); )~ U(X; 0)—Nlog |V}
t=

where X is an observation while X(¢), t=1,--., T are the sequence of
generated configurations under the potential @,(-).

4. An approximate likelihood

In statistical physics, it seems to be the main theme to obtain the
value of partition function as a function of certain parameters such as
volume and temperature, because, once the partition function is known,
all thermodynamic properties can be derived from it in principle. It
is, however, hard in general to calculate the value of partition funec-
tion analytically because of the high multiplicity of the integral in (4).
One way to overcome this difficulty is to compute (4) numerically by
brute force. This is one of the roles of the Monte Carlo method de-
scribed in the previous section (precisely speaking, in the usual com-
puter experiments, thermodynamical quantities are directly computed
through (7), not passing through the partition function (see Wood [23]).
The other way is to approximate (4). There have been developed a
number of approximation methods, most of them working well for the
equilibrium configurations of particles in the gaseous and solid phases.

Since one of the purposes of this work is to show the feasibility
of the likelihood procedure suggested in Section 2, it is desirable to use
an approximate partition function, although in principle the Monte Carlo
method might work for the numerical computation of the likelihood
function (see (8)) for every set of parameter values.

When the configuration of points can be regarded as in the phase
of low density gas, the cluster expansion method (for example, see
Mayer and Mayer [11]) is applied. Here, we use the second cluster
approximation, that is, an approximation which includes only two body
interactions and neglects three body and higher order collisions. In that
case, the partition function (4) is given in the following form (Feynman

(6D :

(9) Zy(O)=VI"L—a(@)/| VY=o

where |V| denotes the volume of the region V, and

(10) a()= | [L1—exp {(— 0} e(ridr

(c(r)=2zr or 4=xr* for R* or R® respectively). A brief derivation of (9)

is given in Appendix I. It is emphasized here that the influential re-
gion of the potential should be small enough compared with the specific
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volume |V|/N. Thus, from (2) and (9), we obtain an approximate log
likelihood

(1) log LX; 0)=—"% 31 04X~ X.)

_1 v a9
L N(N—1)log {1 IVI}’

where the common constant Nlog|V| has been neglected.

5. Models

Let us list a few examples of parameterized potential functions for
later use.

PFI ; oO,r)=—log {14 (ar—1)e*"}, 8=(a, B), a=0, >0,
PFII ; O,r)=—log {1+(a—1)e*"}, 0=(a, B), @=0, >0,
PFIIL; O@(r)=p(a/r)—ala/r)", 0=(a, B,0), n>m, B>O0.
PF1I has both ranges of repulsive and attractive force except the case

8
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Fig. 1. Potential curves for the model PFI. The case a=0 represents purely
repulsive potential, while the case a>0 has both repulsive and attractive
ranges.
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a=0 (see Fig. 1). PFII provides a variety of type, that is, repulsive
for 0=<a<1, ideal gas (Poisson) for a=1, and attractive for a>1 (see
Fig. 2). PFIII is known as one of the realistic potentials in statistical
mechanics, being called the Lennard-Jones type potential, and has some-
thing like an inhibitory region (see Fig. 3). The second cluster inte-
gral a(f) defined at (10) in the preceding section can be obtained ana-
lytically. The corresponding values are, in order,

PFI ; a(e, B)=(z/)(1—avz[B/2),
PFII ; a,(a, ﬁ):n(l-—a)/ﬁ,

PFIII; e, §, o)=—-2-gins’ ikl < 51;2)&'03-"/2, m>2, for n

=2m.

The derivation of a(f) for PFIII is reviewed in Appendix II. Actually
we consider only the case of n=12 and m=6 in this paper.

D,(7)

Fig. 2. Potential curves for the model PFII. The cases a=0 and 0<a<1
correspond to repulsive potential, the case a=1 to ideal gas, i.e. Poisson,
and the case a>1 to purely attractive potential.
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Fig. 3. Potential curves for the model PFIII (=12, m=6). The case a<0
corresponds to purely repulsive potential, while the case a>0 has an
attractive part.

6. Model selection

The Akaike Information Criterion (AIC) is defined by AIC=(—2)
-(max log likelihood)+2-(number of adjusted parameters). This is an
estimate of the expected negentropy which is a natural measure of dis-
crimination between the true and estimated distributions of the data.
We adopt the model which minimizes the value of AIC among the above
competing models. Another selection of models could be performed by
the likelihood ratio test of the null hypothesis model H, against the
alternative model H,, provided that the model H, contains H, as a
special case (i.e. nested sequence of models). The relationship between
the AIC and the likelihood ratio statistic is given by’

A(H,; H})=AIC (H,)— AIC (H)+2k ,

where k is the difference between the degrees of freedom of H, and
H, (Akaike [1]). Notice that models PFII and III contain the Poisson
case (i.e. @,(r)=0), and also that models PFI and III contain a repul-
sive potential as a special case. For such nested situations the mini-
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mum AIC procedure is nothing but a y*-test, taking the variance (i.e.
2k) as the level of significance. It is emphasized that we can further
extend the comparison among non-nested models by using AIC, which
was originally derived for such a purpose (Akaike [1]). (See Ogata [16]
for a detailed review on the derivation of the AIC, and also see Saka-
moto and Akaike [19] for a comparative study between the minimum
AIC and the likelihood ratio test procedure.)

7. Computer experiments

Firstly we fitted the models PF I-III to a Poisson pattern which is
illustrated in Fig. 4, and the corresponding values of the maximum log
likelihood (11) and AIC are listed in Table 1. It should be noticed here
that the value of both statistics are always zero for the Poisson model,
since it corresponds to the null potential function (@,(r)=0). Thus
Table 1 shows that the Poisson model is the best, according to the
minimum AIC procedure.

Secondly, using the algorithm given in Section 3, we independently
generated three equilibrium patterns of the model PF I with its param-
eters «=5.0 and f=2.0. After this the model PFI was fitted twice
(once with restriction a=0) to each data. Furthermore we generated
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Fig. 4. Sample of Poisson pattern used for the analysis. This is
only a part of the pattern of 500 points.
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Table 1. Fitting of models to a Poisson pattern (N=500)

Estimated parameters

Model - log L AIC
é 8 P

PF1I 13.25  77.28 — —0.17 3.7

PFII 0.00 5.54 %104 — —0.00 4.0

PF III 2.06 0.65 0.15 —1.88 2.2

Poisson — — — 0.00 0.0

Table 2. Simulations for PF I and fitting of the same model

True parameters Estimated parameters
_— AIC(T) " AIC(E)
ao Bo @ B
5.0 2.0 —-20.9 3.97 1.52 -17.8
0.0 (fixed) 37.62 1.4
5.0 2.0 —14.7 7.34 3.56 -15.1
0.0 (fixed) 37.77 0.6
5.0 2.0 7.4 2.22 1.50 —11.2
0.0 (fixed) 43.18 0.9
0.0 1.0 —24.0 0.00 1.11 —20.1
0.0 (fixed) 1.11 —22.1
0.0 1.0 —36.6 0.00 0.86 —-33.1
0.0 (fixed) 0.86 -35.1
0.0 1.0 —30.5 0.00 1.05 —26.5
0.0 (fixed) 1.05 —28.5

For all simulated patterns, the number of points is N=500. The
second line in each data gives the estimates with restriction a=0.0.
In this and the following tables, AIC(T) and AIC(E) represent the
values of AIC for the true and the estimated parameters.

Table 3. Simulations for PF II and the fitting of the same model

Number True parameters Estimated parameters
of points ——— AIC(7) — AIC(E)
N a0 Bo & B
270 3.0 1.0 -12.2 3.18 1.53 —8.9
0.0 (fixed) 563.09 2.0
270 3.0 1.0 —-54.8 12.11 3.78 -72.0
0.0 (fixed) 565.23 2.0
270 3.0 1.0 -30.1 3.70 0.85 —28.8
0.0 (fixed) 224.73 1.9
500 0.0 1.0 —20.7 0.13 0.87 —18.1
0.0 (fixed) 1.12 —18.9
500 0.0 1.0 —-35.4 0.00 0.87 -31.8
0.0 (fixed) 0.87 —33.8
500 0.0 1.0 —29.4 0.00 0.90 —25.6

0.0 (fixed)  0.90 —27.6
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Table 4. Simulations for PFIII and the fitting of the same model

Number True parameters Estimated parameters
of points AIC(T) " AIC(E)
N o Bo g0 a B F'4
429 0.0 10.0 1.0 —78.7 0.00 9.88 0.93 —79.6
0.0 (fixed) 9.78 0.94 —81.6
429 0.0 10.0 1.0 —105.0 1.53 10.35 1.08 —101.7
0.0 (fixed) 10.02 1.04 —102.7
429 0.0 10.0 1.0 —-103.0 3.99 22.18 1.04 —-102.0
0.0 (fixed) 10.01 1.03 —99.9
500 4.0 2.0 0.2 —-18.2 4.41 2.11 0.21 —14.7
0.0 (fixed) 0.50 0.17 3.3
500 4.0 2.0 0.2 —28.0 4.34 1.75 0.21 —25.2
0.0 (fixed) 0.01 0.23 2.4
500 4.0 2.0 0.2 -17.7 4.27 2.01 0.21 —13.1
0.0 (fixed) 2.00 0.15 2.3

three equilibrium patterns of the same model with ¢=0 and 3=1.0.
Then the model PFI was fitted again in the same way. The values
of the true parameters, maximum likelihood estimates and AIC of each
experiment are listed in Table 2. Similar experiments are performed
for the models PFII and III and corresponding values are listed in
Tables 3 and 4 respectively. These tables show that AIC (T)<AIC (E)
holds for most cases, which is expected if the simulation of the pat-
terns was performed adequately. Note here that AIC (T) is nothing
but (—2)log (likelihood at the true parameter), since we have no ad-
justed parameters in this case. These tables also show that the mini-
mum AIC procedure can distinguish the purely repulsive case =0 from
other cases a>0 within each model.

Lastly we generated three spatial patterns (Figs. 5(a)-7 (a)) whose

Table 5. Cross fitting of models to simulated data

True parameters Fitted Number of
Data N AIC parameters
model
Qg ﬂo ago k
PF1 500 5.0 2.0 — PF1 -9.1 2
PFII —6.1 2
PF III 4.2 3
PFII 500 1.8 1.0 - PF1 —4.1 2
PFII —9.8 2
PF III 1.8 3
PFIII 500 4.0 2.0 0.2 PF1 —4.1 2
PFII —-5.5 2
PF III —22.9 3
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corresponding potential functions, respectively PF I, II and III, are il-
lustrated in Figs. 5(b)-7 (b). Then all models PF I-III were fitted to all
of the three sets of data. Each AIC value is recorded in Table 5,
which shows that we can discriminate the true potential function from
others reasonably well with a moderate sample size. The best fitted
potential functions are also given in Figs. 5 (b)-7 (b).

8. Some examples of spatial patterns

Next, all of the models PFI-III were fitted to some real data.
Figures 8 and 9 (a) show respectively the natural stands of saplings (N=
65) and of seedlings and saplings (N=204) of Japanese black pine, Pinus
Thunbergii. These data were obtained by Numata [13], [14]. The AIC
values for these data for respective models are given in Tables 6 and
7. As for the first data, the AIC values in Table 6 indicate that the
Poisson model is better than any of the available models in this paper.
This result coincides with the original analysis by Numata [13] through
quadrat method and with other non-parametric analyses by Bartlett
[2], Besag and Diggle [4] and Diggle [5]. For the second data the
model PFIII was selected to be the best with AIC=-—17.9 (see
Table 7), whose estimated potential function is illustrated in Fig. 9 (b).

+ +
+ + + +
+ + +
+ + * +
+
+ + g
+
+ + .
+ + L
+4+
+ L+ o+ o+ + + +
+ +
+ + + +
+ + 4 +
+ +
+  + + +
+ +

Fig. 8. The map of saplings of Japanese black pine, Pinus Thun-
bergii (N=65 in a 5 metresx5 metres area, Numata, [13]).
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Table 6. Model fitting to Japanese black pine saplings
(N=65, Numata [13])

Estimated parameters Number of

Model " AIC parameters
a B & k
PFI 0.00 0.59 — 2.8 2
0.0 (fixed) 0.59 — 0.8 1
PFII 0.00 0.59 — 2.8 2
0.0 (fixed) 0.59 — 0.8 1
PFIII 1.71 0.89 1.73 2.1 3

Table 7. Model fitting to Japanese black pine seedlings
and saplings (N=204, Numata [14])

Estimated parameters Number of

Model - AIC parameters
a B g k
PFI 0.00 0.42 — —11.9 2
0.0 (fixed) 0.42 — —13.9 1
PFII 0.00 0.42 — —11.9 2
0.0 (fixed) 0.42 — -13.9 1
PF III 0.24 3.42 1.22 —15.9 3
0.0 (fixed) 2.20 1.25 -17.9 2

This indicates that something like hard-core (or self-inhibiting) interac-
tion is exerted by the seedlings and saplings. In other words, it means
that the effect of spacing between pine trees is found, whereas Numata
[14] himself suggests a contagious tendency after quadrat analysis. In
our opinion, this does not indicate contradiction between the two re-
sults, but is due to the difference of scale between the two analyses.
That is to say, our approach is restricted to be local, whereas Numata’s
is rather global.

Next, we analyzed a nesting pattern of Gray gull, Larus modestus,
in a 100 metres square area (Howell, Araya and Millie [9]). The dis-
tribution of nests (N=110) is shown in Fig. 10(a). Table 8 gives the

Table 8. Model fitting to Gray Gull’s nesting pattern
(N=110, Howell, Araya and Millie [9])

Estimated parameters Number of

Model ~ AIC parameters
@ B G k
PF1 0.00 0.14 — —8.6 2
0.0 (fixed) 0.14 — —10.6 1
PFII 0.00 0.14 — —8.6 2
0.0 (fixed) 0.14 — —10.6 1
PFIII 0.00 3.40 2.01 —11.5 3
0.0 (fixed) 1.99 2.10 —13.5 2
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AIC values of this data for respective models. In this case, as before,
PF III was selected as the best model with AIC=—18.5. The estimated
potential function is indicated in Fig. 10 (b). This result suggests that
some spacing mechanisms also works among nests due to the territorial
aggression of individuals against intruders and that no indication of
attractive potential can be found, whereas Howell et al. [9] concludes
that the distribution of nests does not differ from a Poisson point pat-
tern.

Finally we consider a spatial pattern of aftershock hypocentres of
the Off Tokachi earthquake in Japan which occurred on May 16, 1968.
Based on the observation by the Japan Meteorological Agency, we re-
stricted here the observed region to a certain area which contains the
epicentre of the main shock, and then plotted the epicentres of earth-
quakes in Fig. 11 (a) during the six months’ interval immediately after
the main shock. The AIC values of the models PF I-III are shown in
Table 9, from which PF1 was chosen to be the best. The estimated
potential function is given in Fig. 11 (b), which would indicate a spatial
mechanism of stress release.

Table 9. Model fitting to the spatial aftershock pattern of
the Off Tokachi earthquake (N=80)

Estimated parameters Number of
Model — AIC parameters
a B 4 k
PFI 1.04 0.05 — —16.4 2
PFII 2.72 0.03 — -15.1 2
PFIII 6.49 6.92 1.16 -5.3 3

9. Further remarks

It was assumed in the analysis of the preceding sections that the
given spatial patterns are one of the gas-like configurations. Otherwise
the approximations (9) and (11) do not hold. It is not easy to evaluate
the accuracy of the approximate likelihood theoretically at this stage.

Other approximations of the partition function (4) exist for the
solid-like configurations. Nevertheless the most difficult but quite in-
teresting case is a liquid phase, where the partition function can usu-
ally be estimated by the simulation (see (8)). A Bayesian estimation
of the potential function, therefore, would be useful as a general method
for any of those phases. That is to say, for some prior =(4),

o(r; X)=S o(r; 6)L(X; 0)r(6)db / S L(X; 6)n(8)d0
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= 310(r; 0)L(X; 003 L(X; 0)

is an estimate of the potential function, where 64,, 1=1,--., M, are to
be generated according to the distribution #(#) and then for each 4,,

L(X; 6,) is replaced by the estimate L(X;6,) of (8) in Section 3. These
remarks will be developed elsewhere.

Further details such as the asymptotic properties of the maximum
likelihood estimates of (2) and (11), possible biases caused by edge effects
or approximation of the likelihood we expect to study in the future.
It is of course desirable that further suitable parametric potential models
should be exploited according to the purpose of the analysis.
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APPENDIX 1. Derivation of Approximate Partition Function (9)

In the following, we derive (9) in a somewhat different way from
that of Feynman [6].
Let us first rewrite (4), using (3), as follows:

(A.1) ZN(0):SvN I ﬁ[ 1 exp {—0,(X,.)}dX, - -d Xy

T {1+ /(X)) dX,: - dXy

=SVN n=1 m=n+
where X,,=|X,—X,| and
f(an.):exp {_¢6(Xnm)} '_1 ’

which is called the Mayer function. Note that f(r)=0 for the ideal
gas, i.e. the case @,(r)=0 for r>0, and that f(r)—0 as r— o for
physically reasonable potentials, i.e. @,(r)—0 as r—oo. If the influen-
tial range of the potential @,(r) is short enough, f(r) tends to zero
rapidly as r increases. This fact will make it reasonable to expand
the product in the integrand of (A.l) in terms of the Mayer function.

For example, if N=3, the expansion of the integrand of (A.1l) has
the form:
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(A.2) 14 f(Xip) + F (X)) + f (Xos) + F (Xi2) f (Xis) + F (Xi2) f (Xis)
+ [ (X)) f (Xag) + f (X12) f (X19) f (Xis) -

Each term in (A.2) constitutes a “cluster” and such an expansion
is called a cluster expansion. The first term is the ideal gas term and
contributes a factor |V[' to the partition function. Each of the follow-
ing three terms such as f(X,,) is the second cluster. These terms give
to the integral (A.1) a contribution of —3|V[a(d), where

(A.3) a()= | [1—exp (~ O X} X, ,

which is called the second cluster integral. If the potential range is
small enough compared with the mean volume per point, as already
assumed in the text, the range of the integration in (A.3) can be safely
extended to infinity, and then (10) results. The second cluster integral
represents a contribution of two body collision to the partition funection.
The last four terms in (A.2) represent the third clusters. It is easy
to show that, among them, three terms such as f(X;;)f(Xy;) contribute
to the integral (A.1) 8|V [{a(d)}:. The integral of the final term, how-
ever, cannot be reduced to a multiple of the second cluster integrals.
Such an integral is called an irreducible integral. (Note that a(4) is
the simplest irreducible integral.) In this case, it represents a contri-
bution of three body collision. In other words, the value of f(X,,)-
Sf(X5)f(Xy) is large only when the points 1, 2 and 3 are within the
potential range of each other at the same time.

Here, we introduce an approximation. Namely, we replace the

integral of f(X,)f(X.)f(Xa) by {S f(Xlz)Xm}az—{a(a)}s. It means that

the (irreducible) cluster of three points 1, 2 and 3 is assumed as if it
is composed of three independent second clusters. Thus, within the
framework of this approximation, (A.1) turns out, for N=3, to be of
the form

|[VE=8|V[a(8)+3|V|{a(6)}*— {a(o)}sr—lV|3<1_9[1%)>m_”/2 .

For a general N, by introducing a similar approximation to every ir-
reducible integrals are shown above, (A.1) gives

1

2,0)=1v (1~

>N(N—1)/2

which is equivalent to the second cluster approximation (9) of the parti-
tion function as given in the text.
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APPENDIX Il. Derivation of a(a, 8, o)

We show here a derivation of the second cluster integral a(e, 8, o)
for the Lennard-Jones type potential PF III of the form

(A.4) qbﬁ(r):p(%)m—a(%)”, m>2, 6=(e, B, ).
By integration by parts, (10) becomes for R?
a(f)=—r Sw 'rzm exp {—@,(r)}dr .
0 dr
Substituting (A.4) in the above expression, we obtain
a(6) = — mrac® S“’ x’"’”(l—%ﬂ— x"‘) exp (—pa+azm)dz ,  (z=a/r) .

Expanding the factor exp (ax™) in the integrand into a series, we ob-
tain an expression,

(AB)  a(0)=—mras’ 5} -I‘:_S xmk+m-8(1—ﬁ )exp(—ﬂxm)dx.
This reminds us of an integral formula
(A.6) S”xb—ne-wcdx=r<£+1> /a"’”b, for a, b, ¢>0,

0 C .

where I'(-) is the gamma function. Applying (A.6) to (A.5), it follows
that

a(6)= —mrac® E { I'((mk+3m—2)/2m) B cmi+m=D/om

mk+m—2

_28 T ((mk+4m 2)/2m) B-(mm,n-z)/zm} )
o mk+2m—2

If we use the property of gamma function, i.e. I'()=(z—1)I"(z—1)=
(2—1)(z—2)I'(z—2) for respective terms in the parenthesis, we finally
obtain a more simplified form

=" 1/m 5 S _1_ mk—21\ , —%/2
W= B BT r(Pet Jarsn, m>2.
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