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Summary

The construction of a class of invariant polynomials in several
matrices extending the zonal polynomials is discussed. The method
adopted generalizes the original group-theoretic approach of James [9].
A table of three-matrix polynomials up to degree 5 is presented.

1. Introduction

Following the work of James [9], [11] and Constantine [56], many
multivariate distributions have been represented in terms of the zonal
polynomials C(X), where X is an mXm symmetric matrix, and « is
an ordered partition of a nonnegative integer %k into not more than m
parts. These polynomials arise from the group representation theory
of the real linear group Gl(m, R) of nonsingular m X m matrices. An
extension of the zonal polynomials to invariant polynomials C;(X;,)
in r matrices, X,,;=(Xj,--+, X,) has been given for r=2 by Davis [7]
and for =8 by Chikuse [4]. Here «[r]=(x(1),- - -, k(r)), where the «x(7)
are ordered partitions of nonnegative integers k(i) into <m parts (1=

1,---,7) and ¢ is an ordered partition of f =Zr k(7). The basic prop-
i=1

erty of the polynomials is the following,

@y | Cl A X H)AH= | CE A )CE N X)ICALL)

P E€x(1)ex(2)e ove (T
where the A, are m Xm matrices, dH is the invariant Haar measure
over the group O(m) of mXm orthogonal matrices H, and I, denotes
the m X m unit matrix. The summation on the right-hand side of (1.1)
extends over those partitions ¢ for which the irreducible representa-
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tions of Gl(m, R) indexed by [2¢] occur in the decomposition of the
Kronecker product (>r§ [2k(¢)]. The C;"(X,,) are invariant under the
i=1

simultaneous transformations
(1.2) Xi—-)H’XiH, HE O(m), 1;:1,-.., r.

The basic existence theory for the polynomials, together with some
of their properties, is summarized in Section 2. Applications to multi-
variate distribution theory have been presented by Davis [6], Chikuse
[2], [3], Phillips [13], and Richards and Gupta [14]. The problems of
construction and convergence associated with expansions in these poly-
nomials are, of course, considerably more serious even than in the
case of the zonal polynomials (see discussion in Muirhead [12]). How-
ever, an application of the lower degree polynomials in two matrices
has been given by Davis [8], relating to the effects of moderate multi-
variate nonnormality on the MANOVA tests.

The present paper is concerned with the construction of the C;i"7,
using an extension of the original group-theoretic approach of James
[9], [10] for the zonal polynomials. A tabulation of invariant poly-
nomials up to degree 5 in the case r=2 has been given in Davis [6],
and the corresponding polynomials for r=38 are presented here in
Table 1.

2. Summary of existence theory

We first summarize some results concerning the existence of the
invariant polynomials, following Davis [7] and Chikuse [4]. Let X,
.-+, X, denote mxm complex symmetric matrices, and let P, (X))
denote the class of homogeneous polynomials of degree k(1),---, k(7)
in the elements of X|,.--, X, respectively,

(2.1) PucrXer)=Q Pacol X)) »

the Kronecker product of the classes of polynomials of degree k() in
the elements of X, (¢=1,---,7). The simultaneous congruence trans-
formations by matrices L € Gl(m, R)

(2'2) Xy-’LXiL’ , 'i:l,. e, T

produce linear transformations in Py, regarded as a vector space over
the basis consisting of all monomials of degree k; in X, (i=1,.--, 7).
Their linear transformations constitute a representation of Gl(m, R) in
P,,; which is the Kronecker product of the representations induced by
(2.2) in the Piu(X;) (¢=1,---, 7). This leads to a decomposition of P,
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into a direct sum of subspaces which are invariant and irreducible un-
der this representation,

(2.3) Per(Xer) =@ @ Vi (Xin)

where the k[r] are all partitions of k,---,k, into <m parts, and @
runs through all partitions of 2f into <m parts for which the repre-

sentation [@] occurs in the decomposition of é) [2x(4)].
i=1

When 0=2¢, ¢ a partition of f into <m parts, CV5;? contains a
one-dimensional subspace which is invariant under the restriction of
(2.2) to He O(m). This subspace is generated by a suitably normalized
polynomial I")(X;,;), which is invariant under (1.2). We note that
[2¢] may occur with a multiplicity »{3>1 in the decomposition of

® [2k(7)]. The direct sum of the corresponding equivalent irreducible
i=1

subspaces

@4) U= @ Vi

1

is then uniquely defined, but the individual G153, and hence the I,
are not.

In obtaining a resolution of this nonuniqueness which is sufficient
for practical purposes, we first note that for a given k[r]. the set of
all distinct products of traces

(2.5) (tr Xf’“’ Xg“z)- .. Xra(n lea) sz’- . .)p(l)
. (tl‘ leu)qu(m, . ,X;](r)th(l)th(Z). . ,)p(z), .,

of total degree k(?) in X, (1=1,---,7), constitute a basis for the IV
(Clearly, all monomials (2.5) are invariant under (1.2).) Now write

G=Xad®X.,

where the A; are m X m matrices, and the «; are arbitrary real num-
bers, and let

det (La—G) ™= 7 & .aPE, k)]« k(r)! .

k(1), ese, k(r)=0
It may be shown that
(2.6) En=n'"(A1) i (Xiry)

where m(X;,;) is the vector of all monomials (2.5), and 4, is a diago-
nal matrix. Then it is sufficient to (1) construct »{"! invariant poly-

nomials ;") X;,)) in U§? whose coefficients are orthomormal with re-
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spect to the diagonal elements of 4, as weights, and (2) multiply these
by 2zj/* to obtain polynomials C;"? satisfying (1.1), where z,=C,(I,)/2’(m/2),
and (m/2), is a generalized hypergeometric coefficient (Constantine [5]).
The total number of C;? for a given k[r] is equal to the number of
monomials (2.5).

Two further properties of the invariant polynomials which will be
used in this paper are that

(2.7) [ Ceer(Xi)= 057G (Xy)
i=1 S E€x(1)ex(2)e ooe ox(r)

where

(2.8) 0 =C UL, - - -, L)[Cy(I,) »

and the multinomial expansion

Ny ) — f <[r}elr]
@9 CEE)= Tt (0, T 1) 0K

Equation (2.9) allows certain polynomials to be directly constructed
from the zonal polynomials. Since the irreducible representation [2f]

occurs only in the decomposition of é) [2k(2)], with multiplicity 1,
i=1

(k(l), - f-, k(r)) CF A Xer)

is given by the terms of degree k() in X, (i=1,---,7) in the expan-

sion of C,(é X¢>. The coefficients of the basis elements (2.5) in 1x3
i=1

X +++ X(2f—1)Cf3 are precisely the diagonal terms of 4,,,.

Example 1. Writing (X)=tr(X), the following results are ob-
tained.

(X )=—113[(X P +6(X%)(X)+8(X7)],

C(X, Y)=—115— [(XH(Y)+4XYNX)+2(XH)(Y)+8(XY)],

4,,=diag (1, 4, 2, 8) .
(The factor 5 in equation (4.9) of Davis [7] should be deleted.)
(X, Y, Z)=1i5[(X)(Y)(Z)+2{(X)(YZ)+(Y)(ZX)
+ZYWXY)} +8(XYZ)],
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4,,,=diag(1,2,2,2,8).

Similarly,
f -1 (1), ooe,15(T)
(k- 1) (Xers)

may be obtained from le<ﬁ Xi>.
i=1

3. Representations of Gl(m, R) in tensor space

The basic notion in constructing the invariant polynomials is that

the component of an arbitrary polynomial invariant under (1.2) <say

r

1T (tr X,-)"“’) in a subspace CV5'? must itself be invariant, and hence,

i=1
provided it is not identically zero, must be proportional to the corre-
sponding I3"(X,;). The problem thus arises of constructing the idem-
potents which project upon the €53, and the approach adopted here
essentially follows that of James [9], [10].

We first note that any polynomial p(X;,)) € Pi,; may be written as

D PXe)= 31 33 ali(), -, i), @)

=1 i(2Sf)=1

2,(1(2k(1) — 1), U2k(1)))- - - 2, (U2 —1), U2S))

where X,=(x,(7, 7)), l=1,---,r. The coefficients a(i(1),---, i(2f)) are
uniquely defined by the requirement that they should be invariant un-
der the group U, of permutations w which (i) permute within each
of the f pairs

(3'2) (17 2)7 (3r 4): ) (2f—11 2f)

and (ii) if the pairs are consecutively grouped into r sets of sizes k(1),
-++, k(r) in that order, permute the pairs independently within each set.

Uyir thus has order 27 ﬁk(i)!.

Regarding each polynomial as a point with coordinates {a(i(1),---,
i(2f))} in the space C™ of complex-valued tensors {c(i(1),---, i(2f))},
uy=1,---,m, g=1,---,2f, it follows that P,(Xj) corresponds to a
linear subspace of C™’/, defined by invariance under U, Further,
letting L=(l(3, 7)), the transformation (2.2) applied to (3.1) yields

p(X[r])_"p(L’XlLy ] L'XrL)
=3 a*(i1), - -, U2N(UD), 42)- - -2 (U2f —1), #2S)) ,

where >} denotes the summation in (3.1) and
(O]
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3.3) a¥(i1), -+, (21 =33 UL, GQ))- - -UU2S), 32S))
- a(j(1),- -+, 3(21)) .

Equation (3.3) is a component of the representation of Gl(m, R) in C™*
defined by the transformation

(3.4) c*(i(1),- -+, U2f))= > Ui1), 5QA)- - -Ui2f), 521))
: C(j(l),' ] j(zf)) ’

i.e. the 2fth Kronecker power representation
85) L—-[L”=LRL®---QL (2f terms), L e Gl(m, R) .

From (3.3), P,,; is an invariant subspace under this representation.
Its decomposition (2.3) is thus a special case of the decomposition of
C™" under (3.5), the theory of which is conveniently discussed, for
example, in Boerner [1], Chapter 5. Briefly, the salient points of this
theory are as follows.

(a) The centralizer $B,, of the representation is the algebra of
linear transformations of C™’ which commute with all the transforma-
tions (3.4). There is a 1-1 correspondence between the right ideals of
B,, and the invariant subspaces of C™’ under (3.5). The latter are
generated by the generating idempotents of the corresponding right
ideals. Irreducible invariant subspaces are generated by the primitive
idempotents generating minimal right ideals.

(b) Let S;, denote the symmetric group of permutations of 2f
objects. Any such permutation o,

(3.6) 1,2,--+,2f>a(1),---, 0(2f),
defines a linear transformation of C™,

(3.7 e(@(1), - - -, U2FN—e(ile(1)), - - -, Ua(2S)))

which is readily seen to commute with all transformations (8.4). More
generally, the centralizer $,, is isomorphic to the group ring S,,, of
S;; modulo the two-sided ideal of ring elements which annul C™”. The
idempotents of $,, thus correspond to idempotents generating right
ideals of &S,;.

() A set of irreducible invariant subspaces spanning C™' is gen-
erated by essential idempotents of S,, constructed from the standard
Young tableaux with <m rows. (Tableaux with >m rows yield idem-
potents which annul C"".)

The invariant subspace P, is seen to be generated by the idem-
potent
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r -1 r
(3.8) Cumy= {2f ]le(i)!} 5 w=Tlewo

i= ueU,[r] i=
where ¢, is the corresponding idempotent for the group U, of per-
mutations which permute with and among the ith set of pairs in (3.2)
(corresponding to James [9], equation (13)). Hence we may write

(3.9) Pin=e C™,

and the centralizer of the representation (3.5) is the algebra e, 1B, 6.
We thus require the primitive idempotents of the latter, since these
project onto the irreducible invariant subspaces of P,,;.

4. Application of Young's idempotents

Let @=[F},---, F,] denote an ordered partition of 2f into positive
integers Fi=zF,=..-2F,>0, iﬂ:Zf . A Young’s tableau T'(®) cor-

responding to @ is any arrangement of the integers 1 through 2f in
successive rows of lengths F),..., F},, the first integers in the rows
constituting the first column (Boerner [1], Chapter 4).

For each T'(®), two elements of the group ring &;, may be defined.
First, the symmetrizer s;e,=3>) 7, the sum of all permutations p in the
subgroup of S;, which leaves the rows of T invariant. We also have
the alternator are,=3>348,9, in which the sum extends over all permu-
tations leaving the colummns invariant, and 4,=1 or —1 according as ¢
is an even or odd permutation. Then

4.1) Erw@>=0rw®»Sr @)

is an essential primitive idempotent (i.e. a nonzero scalar multiple of
a primitive idempotent) of S;,. If g<m, it generates an irreducible
invariant subspace of ™. Subspaces defined by different tableaux are
equivalent if and only if they correspond to the same partition @ of
2f.

Any primitive idempotent ¢ of S;, has the property that

(4.2) eve=6,ec, all xeS,y,

where £, is a scalar which may be zero. Conversely, if ¢ is idempotent
and has the property (4.2) it is a primitive idempotent (Boerner [1],
Theorem 3.9). Hence, referring to (3.8), ei 1€raseiry iS either zero or
else an essential primitive idempotent of the centralizer e, B;ei,. It
thus generates an irreducible invariant subspace of

4.3) QYEI= (-B] Ui

&7
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(see (2.4)). More specifically

”
(4.4) €x[r] {;l:l; ercz‘(c))} E12$)Ckr] »

if it is nonzero, generates an irreducible invariant subspace of Us.
Here, if the integers 1 through 2f are regarded as being partitioned into
consecutive sets of sizes k(1),---, k(7), ere.«n» is the essential idempotent
for a Young’s tableau corresponding to the partition 2«(7) constructed
from the integers in the ith set.

The above suggests the following construction of the C;".

(1) Project ﬁ(tr X))k onto U1 by means of (4.4), varying the
i=1

tableaux T until the required number »i™ of linearly independent in-
variant polynomials I';i"7 in this space is obtained. If necessary, fur-
ther basis monomials (2.5) may be used.

(2) Select as the first ;{7 that unique linear combination of the I
which yields the component of ﬁ (tr X,)*® in this space (Davis [7], Sec-

tion 5). Convenient 4,;,-orthonormal linear combinations may then be
constructed to complete the set. Multiplication by 2J* yields a set of
C;.

5. Projection of iiﬂl(tl‘ Xy

7 S
The tensor corresponding to TJ (tr X,)*® is easily seen to be TT &(
t=1 Jj=1

(25 —1), 1(25)), where d(k,l) is Kronecker’s delta. In constructing the
required projections, we need to calculate the result of applying e, o-
ex-; to this tensor, where o € S;, (equation (3.6)). This is clearly

(6.1) 35 3(o(1)), Wa(2)))- - -3(ia(2f —1)), (o(2))
- 2y(i(1), ¥2))- - -2, (U2F —1), U2S))

bearing in mind the symmetry of the X,. A convenient method for
reducing (5.1) follows as a direct extension of James [10], Section 6.
Write 2f dots along a line, and connect successive pairs (1, 2), (3, 4),
-++,(2f—1, 2f) with loops above the line. Then connect the pairs

(5.2) (6(1), 2(2)), - - -, (6(2f —1), 0(2f))

with loops below the line, forming closed cycles. Regarding the first
k(1) pairs (1, 2),---, (2k(1)—1, 2k(1)) as “X;-pairs”, the next k(2) pairs
as “X,-pairs”, ete., each cycle may be interpreted as the trace of a
product of powers of X,,---, X,, the order of terms in the product cor-
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responding to the order in which the cycle passes through the pairs.

The polynomial (5.1) then reduces to the monomial consisting of
the product of these traces over all the cycles. Clearly it is a member
of the basis (2.5).

Example 2. Take f=4, r=3, k(1)=2, k(2)=k(38)=1, and let ¢ de-
note the permutation 6 3 54 2 8 1 7 of the integers 1 through 8.
From Fig. 1, the polynomial (5.1) is given in this case by tr(X,X;)-
tr (X,X;), as is readily confirmed directly.

X1 Xz X3

IE:E 3§ 4;5 6 8

Fig. 1

For computational purposes it is desirable to reduce the number of
permutations considered as far as possible. Consideration of the dia-
gram approach suggests that the monomial corresponding to (5.1) is
independent of the ordering among or within the pairs; i.e. it depends
only on the left coset of U,, (the group of permutations among and
within the pairs (3.2)) to which ¢ belongs. In expanding (4.4), we may
thus work modulo these cosets. The left cosets of U,, are generated
by permutations of the form

(5.3) 1,2,---,2f—u1), 5(1), «2), 3(2),- - -, U2f), J(2f)
where
(5.4) (=1, D=0, (=1,---, 1), V<UL - <if).

Clearly there are 1x3x---X(2f—1) such permutations, noting that
U;, has order 2/f!. They correspond to the doublets of James.

Example 3. Construction of C3'(X,Y). This polynomial follows
directly from Cp(X) using (2.9). However, we shall derive it directly
to illustrate the method. Young tableaux for 2¢, 2¢(1) and 2«(2) are
respectively

Using cycle notation (Boerner [1], Section 2.2), with ( ) denoting the
identical permutation,

szan=[( ) +(12)+(34)+(12)(34)]
aren=[( )—(13)—(24)+(13)(24)]
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eraan=[( )+(12)]
Eracen= [( )+ (34)] .

All permutations in s, are in U,, and so this term may be replaced
by the identity permutation 1234. Hence we obtain successively (work-
ing modulo U)

Epph— 2[1234 - 1423] y
EraeanEracmeran —>4[2 X 1234—1324 —1423] .

Note that the three permutations appearing on the right-hand side
are the generators of the three left cosets of U, in S,. Normalizing
with respect to 4,,=diag {1, 2}, we obtain

(X, V)=3"[(X)(Y)~(XY)] .

Since [2] has rultiplicity one in the decomposition of [2]®)[2], this poly-
nomial is unique, and multiplying by z’=3""2 we obtain

L(X, Y)=%[(X)(Y)—(XY)] :

6. An dlternative approach

With increasing k(¢) and f, the number of permutations involved
in the expansion of (4.4) rapidly becomes astronomical, raising the prob-
lem of finding alternative approaches. One approach which appears to
be useful, at least in the case of lower degree polynomials, is based
on the observation that if e, jeren€i; 18 nonzero, then it projects onto
an irreducible invariant subspace of 94! (equation (4.3)), and thus may
be used to generate an invariant polynomial. Taking various tableaux
T(2¢), it is possible in principle to construct

6.1) niI=3] nin
«[r]

linearly independent invariant polynomials in G471, If this is carried
out for all ¢ek(l): --- -k(r), then from (2.7) (i) ﬁC,(i,(Xi) may be

expressed as a linear combination of these polynomials, and (ii) the “¢-
component ” of this linear combination is precisely the projection of
TT C.»» and hence of TJ (tr X,)*®, onto the space U5, It may thus be
taken as the first 177,

If ¢ has multiplicity 0 or 1 for all «[r] corresponding to a fixed
k[r], then all the Cs"? may be uniquely constructed by this approach. If
¢h as multiplicity 0 or 1 for all but one k[r], say x[r], then the C,;') may
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be uniquely constructed for all k[r]#x,[r]. Also, the method yields the
first 5, leaving no—1 orthonormal polynomials I',o") (¢'=¢) to be
constructed in Upl. But any ng17! polynomials constructed from the
original set of nf"), which are orthonormal to the set thus far, can
only lie in U, The method therefore yields the C;1 in this case.
However, if ¢ has multiplicity >1 for at least two k[r], then at present
there appears to be no way of constructing the required orthonormal
polynomials in the corresponding /"1 spaces.

This technique has been used in the production of Table 1, which
contains the orthonormal three-matrix polynomials I';*(X,Y, Z)=
2;’CP(X, Y, Z) for partitions ¢ of f, where f=<5. In cases where
¢ has multiplicity 3 for a given «[3], the two polynomials required
in addition to the component of (X)*(Y)**(Z)*® have been con-
structed using 4;;-orthonormality as described above. The calculations

Table 1. Orthonormal polynomials f';m(X, Y, Z) for partitions
¢ of f<5. C=multiplicative constant. (X)=tr X.

F=3, k[3]=1,1,1

f3]=1,1,1

$= 3 21 21 21 13

C= 115 1/15 1/3 1 1/3

(XYZ) 8 -6 0 0 2

(XY)(2) 2 1 2 0 -1

(XZ)(Y) 2 1 -1 1 -1

(YZ)(X) 2 1 -1 -1 -1

(X)(Y)(Z) 1 3 0 o0 1

f=4, k[3]=2,1,1
#3]=2,1,1 K3]=1% 1,1

¢= 4 31 31 31 2¢ 212 31 20 212 212 212 14
C= 1/105 2/2079 2/33 2/3 8/135 4/27 2/27 2/27 4/1755 8/39 4/3 2/15
(X2YZ) 32 —40 8 0 -8 4 -8 4 28 -2 0 —4
(XYXZ) 16 —48 -8 0 6 0 0 -6 24 2 0 -2
(X2Y)(2) 8 32 -2 2 -2 -2 -2 -2 1 -1 -1 2
(X2Z)(Y) 8 32 -2 -2 -2 -2 -2 -2 1 -1 1 2
(XYZ)(X) 6 —20 4 0 —4 2 8 —4 —28 2 0 4
(X2)(YZ) 4 2 4 0 4 -2 -2 1 -2 2 0 1
(XY)(X2) 8 —24 -4 0 3 0 0 6 —24 —2 0 2
(X2)(Y)(Z) 2 2 0 0 2 2 -1 -1 -13 0 0 -1
(XY)(X)(Z) 4 6 -1 1 —1 -1 2 2 -1 1 1 -2
(XZ)(X)(Y) 4 6 -1 -1 —1 -1 2 2 -1 1 -1 -2
(YZ)(X) 2 1 2 0 2 -1 2 —1 2 —2 0 -1
(XR(Y)(Z) 1 1 0 0 1 1 1 1 13 0 0 1
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Table 1. Continued
f=5, k[3]=31,1
£[3]=3,1,1 k[3]=21,1,1
o= 5 41 41 41 32 312 41 32 32 32
C2= 1/945 1/31050 1/115 1/5 8/525 1/30 1/50 2/225 2/45 2/15
(X8YZ) 192 336 64 0 —32 16 -32 4 16 0
(X2YXZ) 192 —-768 —64 0 24 0 —16 —28 —16 0
(X3Y)(Z) 48 456 -8 8 -8 -8 -8 —-14 -2 2
(X3Z)(Y) 48 456 —-8 —8 -8 -8 -8 —-14 -2 -2
(X2YZ)(X) 96 —168 32 0 -16 8 24 —28 8 0
(XYXZ)(X) 48 —-192 -16 O 6 0 16 —22 —4 0
(XNWYZ) 16 8 6 0 16 -8 —4 -2 4 0
(XYW XZ) 48 —-192 -16 O 6 0 —4 18 6 —10
(X2Z)(XY) 48 —-192 -—-16 O 6 0 -4 18 6 10
(XYZ)(X?) 48 —84 16 0 -8 4 -8 26 —16 0
(XHN(Y)Z) 8 184 0 0 8 8 -2 -6 0 0
(XY WX )Z) 24 228 —4 4 —4 -4 6 -2 4 —4
(X2Z)(X)(Y) 24 228 —4 —4 —-4 -4 6 —2 4 4
(XYZ)(X)? 24 —42 8 0 —4 2 6 -2 -8 0
(X(XY)(2Z) 12 114 -2 2 -2 -2 -2 9 -3 3
(X2)(XZ)(Y) 12 114 -2 -2 -2 -2 -2 9 -3 -3
(X)(YZ)(X) 12 6 12 0 12 -6 2 -2 0
(XY )XZ)(X) 24 -9% -8 0 3 0 8 14 8 0
(X(XNY)Z) 6 138 0 0 6 6 1 3 0 0
(XY ) X)»(Z) 6 57 -1 1 -1 -1 4 7 1 —1
(XZ)(X)12(Y) 6 57 -1 -1 -1 -1 4 7 1 1
(YZ)(X)? 2 1 2 0 2 -1 2 1 -2 0
(X3®(Y)(2) 1 23 0o o0 1 1 1 3 0 0
£[3]=21,1,1 £[3]=131,1
o= 312 312 312 221 221 221 2138 312 221 218 213 2138 15
C2= 1/6930 8/99 4/3 1/45 1/9 1/3 1/7 1/21 1/15 1/693 2/27 1 2/45
(X3YZ) 128 4 0 16 8 0 -8 16 —8 —48 8 0 12
(X2YXZ) 400 —4 0 —4-8 0 -4 0 12 -8 -8 0 12
(XYY (2Z) —64 -2 2 4 2 2 4 4 4 -12 2 2 -6
(X3Z)(Y) —64 -2 -2 4 2 -2 4 4 4 -12 2 -2 -6
(X2YZ)(X) -5 —10 O 8-8 0 O —-16 8 48 -8 0 —12
(XYXZ)(X) —80 14 0 14 4 0-2 0 —6 42 4 0 -6
(X3)(YZ) —4 4 0 —-2-4 0 2 4 -2 2 -6 0 -2
(XY )(XZ) —-60 -6 2 -6 0-4 2 0 —6 42 6 0 —6
(X2Z)(XY) —60 —-6-2 —6 0 4 2 0 —6 42 6 0 —6
(XYZ)(X?) -8 8 0-16 4 0 4 -8 4 24 —6 0 -6
(X(Y)(2Z) —66 0 0 —6 0 O0-2 2 2 22 0 0 2
(XY ) (X)(Z) 98 1-1 -8 2 2 0 -4 —4 12 -2 -2 6
(X2Z)(X)(Y) 98 1 1 -8 2-2 0 —4 —4 12 -2 2 6
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Continued
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£=5, k[3]=31,1

f3]=21,1,1 f3]=1%,1,1
b= 312 31z 31 221 221 23] 218 31z 221 213 218 218 15
Cr= 1/6930 8/99 4/3 1/45 1/9 1/3 1/7 1/21 1/15 1/693 2/27 1 2/45
(XYZ)(X) 64 -2 0 —8-4 0 4 8 —4 —-24 4 0 6
(X2)(XY)(Z) -6 0 0 6 —3—3 -2 -2 -2 6 -1 -1 3
(X)(XZ)(Y) -6 0 0 6-3 3 -2 -2 -2 6 -1 1 3
(X3)(YZ)(X) 2 -2 0 1 2 0-1 -6 3 -3 6 0 3
(XY)(XZ)(X) —200 2 0 2 4 0 2 0 6 —42 —4 0 6
(X)(X)(Y)(Z) 33 0 0 3 0 0 1 -3 -3 —33 0 0 -3
(XY)XR(Z) 32 1-1 —2-1-1-2 2 2 -6 1 1 -3
(XZ)(X)(Y) 32 1 1 —-2-1 1-2 2 2 -6 1 -1 -3
(YZ)(X) 2 -2 0 1 2 0-1 2 -1 1 -2 0 -1
(XP(Y)(Z) 33 0 0 3 0 0 1 1 1 11 0 0 1

f=5, k[3]=2,2,1

f3]=2,2,1

b= 5 41 4 4 32 32 32 31 21
C= 1/945 2/135 2/45 2/45 8/31185 8/495 8/45 2/81 16/405
(X2Y2Z) 128 8 16 0 —272 6 0 8 8
(X2YZY) 64 -8 0 16 32 -20 4 -8 4
(XYXYZ) 126 —40 —-16 0 120 24 0 24 —12
(XY2XZ) 64 -8 0 —16 32 —-20 —4 -8 4
(X2Y?)(Z) 32 20 -8 0 —40 -8 0 4 -8
(X2YZ)(Y) 64 4 8 0 -—136 8 0 4 4
(XYXY)(Z) 16 4 -8 0 -6 12 0 -12 6
(XYXZ)(Y) 32 -4 0 -8 6 —10 -2 —4 2
(XY2Z)(X) 64 4 8 0 -—136 8 0 4 4
(XYZY)(X) 32 —4 0 8 6 -10 2 —4 2
(X2Y)(YZ) 32 —4 0o 8 6 -1 2 -4 2
(X2Z)(Y?) 16 4 4 —4 64 4 4 —4 —4
(XY?)(XZ) 32 —4 0 -8 6 -10 -2 —4 2
(XYZ)(XY) 64 —-20 -8 0 60 12 0 12 -6
(Y2Z)(X?) 16 4 4 4 64 4 -4 —4 -4
(X2Y)(Y)(Z) 16 10 -4 0 -20 -4 0 2 —4
(X2Z)(Y) 8 2 2 -2 32 2 2 -2 -2
(XY2)(X)(Z) 16 10 —-4 0 -2 -4 0 2 —4
(XYZ)(X)(Y) 32 2 4 0 -—68 4 0 2 2
(Y2Z)(X) 8 2 2 2 32 2 -2 -2 -2
(X2)(Y2)(Z) 4 4 0 o0 44 0 o0 4 4
(X2(YZ)(Y) 8 2 2 2 32 2 -2 -2 -2
(XY)(Z) 8 2 -4 0 -3 6 0 —6 3
(XY)(XZ)(Y) 16 -2 0 —4 8 -5 —1 -2 1
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Table 1.

Continued

f=5, k[3]=2,21

i3]=2,2,1

¢= 5 41 41 41 32 32 32 31z 21

Ci= 1/945 2/135 2/45 2/45 8/31185 8/495 8/45 2/81 16/405
(XY)(YZ)(X) 16 -2 0 4 8 -5 1 -2 1
(XZ)(Y3)(X) 8 2 2 -2 32 2 2 -2 -2
(X2)(Y)2(Z) 2 2 0 0 22 0 o 2 2
(XYY X)NY)(2) 8 5 -2 0 -1 -2 0 1 -2
(XZ)(X)(Y): 4 1 1 -1 16 11 -1 -1
(Y2)(X)2(2) 2 2 0 0 22 0 0 2 2
(YZ)(X)2(Y) 4 1 11 16 1 -1 -1 -1
(XY R(Z) 1 1 0 0 1 0 o0 1 1

f[3]=2,12,1

¢= 41 32 312 312 312 201 218

C:= 1/90 8/405 17100926 16/12015 64/135 4/81  4/63
(X2Y2Z) —32 8 352 64 2 8 -8
(X2YZY) 0 —20 512 —4 -2 4 —4
(XYXYZ) 0 0 0 0 0 0 0
(XY2XZ) —16 4 560 —60 0 -8 0
(X2Y?%)(Z) -8 -8 —232 —26 2 4 4
(X2YZ)(Y) 32 -8 —352 —64 -2 -8 8
(XYXY)(Z) 0 0 0 0 0 0 0
(XYXZ)(Y) 16 —4 —560 60 0 8 0
(XY2Z)(X) —16 4 176 32 1 4 —4
(XYZY)(X) 0 -10 256 -2 -1 2 -2
(X2Y)(YZ) 0 20 —512 4 2 —4 4
(X2Z)(Y?) -8 2 —200 —4 -2 2 2
(XY?)(XZ) -8 2 280 —30 0 —4 0
(XYZ)(XY) 0 0 0 0 0 0 0
(Y2Z)(X?) -4 -4 76 30 0 -4 4
(X2Y)(Y)(2) 8 8 232 2 -2 —4 -4
(X2Z)(Y) 8 -2 200 4 2 -2 =2
(XY2)(X)(Z) -4 -4 —116 —13 1 2 2
(XYZ)(X)(Y) 16 —4 —176 —32 -1 —4 4
(Y2Z)(X) -2 -2 38 15 0 -2 2
(X2)(Y2)(Z) -2 -2 —178 0 0 -2 =2
(X2)(YZ)(Y) 4 4 —76 —30 0 4 —4
(XY)2(Z) 0 0 0 0 0 0 0
(XY)(XZ)(Y) 8 -2 —280 30 0 4 0
(XY)(YZ)(X) 0 10 —256 2 1 -2 2
(XZ)(Y2)(X) —4 1 —100 -2 -1 1 1
(X2)(Y)2(Z) 2 2 178 0 0 2 2
(XY)X)(Y)(Z) 4 4 116 13 -1 -2 -2
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Table 1. Continued
f=5, k[3]=2,2,1
£3]=2, 1z, 1

= 41 32 312 312 312 221 218

Ci= 1/90 8/405 1/100926 16/12015 64/135 4/81 4/63
(XZ)(X)(Y)? 4 -1 100 2 1 -1 -1
(Y(X)2(Z) -1 -1 —89 0 0 -1 -1
(YZ)(X)2(Y) 2 2 —38 —15 0 2 -2
(XR(Y)(Z) 1 1 89 0 0 1 1

£[3]=12, 12,1
b= 32 312 221 221 221 218 218 213 15

C2= 2/81 32/567 4/5265 8/117 4/9 4/189 8/27 4/9 2/45
(X2Y?Z) 8 8 —76 2 0 —4 2 0 8
(X2YZY) 4 -2 22 —4 2 —6 0 2 4
(XYXYZ) —24 12 84 6 0 —-20 -2 0 8
(XY3:XZ) 4 =2 2 -4 -2 -6 0 -2 4
(X2Y?)(Z) 4 1 28 2 0 —4 2 0 —4
(X2YZ)(Y) -8 -8 76 -2 0 4 —2 0 -8
(XYXY)(2Z) —6 3 —6 —6 0 2 2 0o -2
(XYXZ)(Y) —4 2 —22 4 2 6 0 2 -4
(XY2Z)(X) -8 -8 76 -2 0 4 =2 0 -8
(XYZY)(X) —4 2 —22 4 =2 6 0 -2 —4
(X2Y)(YZ) —4 2 —22 4 -2 6 0 —2 —4
(X2Z)(Y?) 2 2 -1 -1 -1 -1 -1 1 -2
(XY2)(XZ) —4 2 —22 4 2 6 0 2 —4
(XYZ)(XY) 24 -—12 -8 —6 0 20 2 0 -8
(Y2Z)(X?) 2 2 -1 -1 1 -1 -1 -1 =2
(X:Y)(Y)(Z) -4 -1 —28 -2 0 4 -2 0 4
(X2Z)(Y) -2 2 1 1 1 1 1 -1 2
(XY)(X)(Z) —4 -1 —28 -2 0 4 =2 0 4
(XYZ)(XNY) 8 8 —76 2 0 —4 2 0 8
(Y2Z)(X) -2 =2 1 1 -1 1 1 1 2
(X2(Y2)(Z2) 1 1 13 0 0 3 0 0 1
(X)(YZ)(Y) -2 -2 1 1 -1 1 1 1 2
(XY)2(Z) 6 -3 6 6 0 -2 =2 0 2
(XY)(XZ)(Y) 4 -2 22 -4 =2 —6 0o -2 4
(XY)YZ)(X) 4 -2 22 —4 2 -6 0 2 4
(XZ)(Y)(X) -2 -2 1 1 1 1 1 -1 2
(X2)(Y)2(Z) -1 -1 —13 0 0 -3 0 0 -1
XY)X)(Y)2) 4 1 28 2 0 —4 2 0 -4
(XZ)(X)(Y): 2 2 -1 -1 -1 -1 -1 1 -2
(Y)(X)12Z) -1 -1 -13 0 0 -3 0 0 -1
(YZ)(X)(Y) 2 2 -1 -1 1 -1 -1 -1 =2
(XR(Y)RZ) 1 1 13 0 0 3 0 0 1
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were performed by Mrs. J. A. Rover on a PDP 11/10 computer at
CSIRO, Adelaide. Polynomials for r=2, f=6 are available from the
author.

Example 4. Construction of polynomials for k(1)=2, k(2)=1. From
the binomial theorem,

Ci'(X, Y)=—11?[(X P(Y)+4XY)(X)+2(X")(Y)+8(X*Y)]

Ci(X, Y)=%[(X)Z(Y)—2(XY)(X)—(XZ)(Y)+2(X2Y)] .

As in Example 1, 4,,=diag {1, 4, 2, 8}. It remains to construct C%! and
Cit (p=21). Projecting (X)(Y) using the 2¢ tableaux

1 2 3 4 1 25 6
5 6 3 4
the following polynomials in 94%' are obtained,
p=(X)(Y)+(X)(Y)-2X"Y)
2= (X)(Y)+2XY)(X)—(X")(Y)—-2(X*Y)
respectively. Writing
C(X)C(Y)=aC3'+Bpi+ 1D

we readily obtain a=3, 8=6/5, y=—2/5, so that Cj' is proportional to
3p,—my, ie. to

(X)(Y)—(XY)(X)+2(X")(Y)—-2(X"Y) .

Similarly, Ci' is found to be proportional to p,. All four polynomials
are seen to be mutually 4,,-orthogonal.

CSIRO

REFERENCES

[1] Boerner, H. (1963). Representations of Groups, North-Holland, Amsterdam.

[2] Chikuse, Y. (1979a). Distributions of some matrix variates and latent roots in multi-
variate Behrens-Fisher discriminant analysis, to appear in Ann. Statist.

[3] Chikuse, Y. (1979b). Invariant polynomials with three matrix arguments, extending
the polynomials with smaller numbers of matrix arguments, unpublished report.

[4] Chikuse, Y. (1980). Invariant polynomials with real and complex matrix arguments
and their applications, unpublished report, University of Pittsburgh.

[5] Constantine, A. G. (1963). Some non-central distribution problems in multivariate
analysis, Ann. Math. Statist., 34, 1270-1285.



[6]

[7]
[8]
[91]
[10]
[11]
[12]
[13]

[14]

CONSTRUCTION OF INVARIANT POLYNOMIALS 313

Davis, A. W. (1979). Invariant polynomials with two matrix arguments extending
the zonal polynomials: applications to multivariate distribution theory, Ann. Inst.
Statist. Math., 31, A, 465-485.

Davis, A. W. (1980a). Invariant polynomials with two matrix arguments, extending
the zonal polynomials, Multivariate Analysis—V (ed. P. R. Krishnaiah), 287-299.
Davis, A. W. (1980b). On the effects of moderate multivariate nonnormality on Wilks’s
likelihood ratio criterion, Biometrika, 67, 419-427.

James, A. T. (196la). Zonal polynomials of the real positive definite symmetric
matrices, Ann. Math., 74, 456-469.

James, A. T. (1961b). The distribution of noncentral means with known covariance,
Ann. Math. Statist., 32, 874-882.

James, A. T. (1964). Distributions of matrix variates and latent roots derived from
normal samples, Ann. Math. Statist., 35, 475-501.

Muirhead, R. J. (1978). Latent roots and matrix variates: a review of some asymp-
totic results, Ann. Statist., 6, 5-33.

Phillips, P. C. B. (1980). The exact distribution of instrumental variable estimators
in an equation containing n+1 endogenous variables, Econometrica, 48, 861-878.
Richards, D. St. P. and Gupta, R. D. (1980). Evaluation of cumulative probabilities
for Wishart and multivariate beta matrices and their latent roots, unpublished report,
University of the West Indies.



