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Summary

This paper deals with the likelihood ratio test for additional infor-
mation in a multivariate linear model. It is shown that the power of
the likelihood ratio test procedure has a monotonicity property. Asymp-
totic approximations for the power are also obtained.

1. Introduction

Let Y be an observed N Xp matrix of p variables y,- - -, y, on each
of N individuals. We assume that the N rows of Y are independently
distributed according to p variate normal distributions with the common
covariance matrix X and expectations given by

(1.1) E(Y)=AE

where A is a known N Xk matrix of rank ¥ and £ is a kXp matrix

fnd

of unknown parameters. We partition 5 and Y as

Zy X
(1.2) E:(Eb E’Z) and 2:( 1 12)1’1
n Py Py

Sy Iy
Py Dy

respectively. Consider the problem of testing the hypothesis (Rao [9],
[10])

(1.3) H,:Cr=0 against H,:Cr+0

where C is a known ¢Xxk matrix of rank ¢q, I'=5,—&,8 and B=
252, From McKay [7] the hypothesis H, can be interpreted as the
hypothesis that y;=(y,+1,- -, ¥,) supplies no additional information about
departures from nullity of the hypothesis H,: CEZ=0, independently of
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y{'——(yl, ct yp1)°
Let W and B be the matrices of sums and products due to error

and departure from the hypothesis in the problem of testing H,:CE
=0 against H,:CE+#0, i.e., W=Y'(I—A(A’A)'A")Y and B=Y'A(A'A)™"
C'{C(A’A)'C'}'C(A’A)'A’Y. Then the likelihood ratio criterion for
testing H, against H, is an increasing function of

(1.4) A=|8.|/1S.+ S|

where S,=Wy =Wu—WuWi'Wy, S,=Wy+ By—(Wy+By)(Wy+By)™-
(Wy+Byy)—Wy, and W,; and B;; are submatrices of W and B, respec-
tively, partitioned in the manner of 3. In this paper we shall discuss
about the distributions of S, and S,. Using the distributional results
we shall show that the power of the likelihood ratio test procedure has
a monotonicity property. Further asymptotic nonnull distributions of
A are obtained.

2. The distributions of S, and S,

Consider the partitioning of Y into the sub-observation matrices
of the first p, variables and the last p, variables as (Y,, Y,). Given Y|,
the N rows of Y, are independently distributed according to p, variate
normal distributions with the common covariance matrix 3, ,=23—23,
3513, and expectations given by

(2.1) E(|Y)=AI'+Y,8 .

Under the conditional setup the testing problem (1.8) can be re-
garded as one of a linear hypothesis in a multivariate linear model.
Further, since 4 is also the likelihood ratio statistic under the condi-
tional model, it is implicitly known that the conditional distribution of
A given Y, is a Wilks’ lambda distribution. Here we shall give a direct
proof of the result and further distributional results on S,. Since W
and B are independently distributed as a central Wishart distribution
W,(N—k, 2) and a noncentral Wishart distribution W,(q, 2'; 2'C'{C(A’A)™"
-C'}'CE), respectively, we may write W and B as U’'U and X'X, respec-
tively, where the rows of U:(N—k)Xp and X :qXp are independently
distributed according to N,(:,2), E(U)=0 and E (X)={C(A'A)"'C'} "
-:CE=7. Let U, X and 5 decompose as U=(U,, [;), X=(X;, X;) and »=
(91, 72), respectively, where U, : (N—k)Xp, X, :q¢Xp, and » : ¢Xp,.. Not-
ing that (J+X,Wi' X)) '=1-X(X/ X, + W) XY,

(2.2) S,=(X,— X\ Wi W) I+ X Wi X!y (Xo— X W' W) .

Hence we can express S, and S, as Z/FZ, and Z/GZ,, respectively, with
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Zz’ = (Xz’s l]{) ’

0 I-U(U/U)'U!
G=(, —XWi'U)Y I+ XWXV 7', — X Wa ') .

Given Z/=(X/, U/) the rows of Z, are independently distributed accord-
ing to p, variate normal distributions with the common covariance
matrix 2y, and expectations given by

_[mtXB
E(zzlzo—( iy )
where
(2.3) n={C(A'A)y"'C"}~*CI" .

Noting, that F’=F, G'=G, FG=0 and E(Z,|Z)GE (Z!|Z)=75I+X,
-WitX/) '3, we have

THEOREM 1.

(1) S. has a central Waishart distribution W,(N—k—p, 3x.,).
Given R=(I+X,W;'X/)™,

(2) S, has a noncentral Wishart distribution W (@5 3oy 7iR7),

(3) S, and S, are independent.
Further, the rows of X, are independently distributed according to p,
variate normal distributions with the common covariance matrix X
and expectations given by E (X\)=», Wi has a central Wishart distri-
bution W,(N—Fk, 2,) and X; and Wy are independent.

Remark 1. Under the assumption of 7,=0, i.e., CZ,=0, the dis-
tributions of S, and S, are essentially the same as ones of the matrices
due to error and departure from hypothesis in a general MANOVA
model (cf. Fujikoshi [5]).

3. Monotonicity of the power of 4

When we consider the distribution of 4, we may assume without
loss of generality that
3.1) S, ~W,(N—k—mpy, I), Su~W,(q, I; 4) given R,
where 4={/R(; and (=725,
ml""’Wpl(N—k, I) and E (Xl)zcl:‘rhzl—ll/z .

Since the conditional power of the likelihood ratio test procedure de-
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pends only on the characteristic roots 8,=---=4, of 4, the uncondi-
tional power depends on both #=C{; and {,. We can write the power
and the conditional power of the likelihood ratio test procedure as
B0, &) and B(D;|R), respectively, where D,=diag (3, -, d,). Then

(8.2) BA0O, 5)=E (8D;| R)) .

Using the result due to Das Gupta, Anderson and Mudholkar [4] that
B« D|R) increases monotonically in each d;, we have

THEOREM 2. If O*=(}(F¥'=0=({;, then
(3'3) ,BA(B*’ Cl)g.BA(@’ Cl) .

Proor. It is sufficient to show that d¥=4;, where of=---=0} are
the characteristic roots of 4*=(}'R{¥. Then the inequality can be
proved as follows:

8} =ch, (R*@*R""*)
=ch, {R*@R"*+ R"@* —6O)R"?}
=ch, (R!OR*)=3, (ch. [3], pp. 33-34)

where ch, () means the ith largest characteristic root of a matrix.

Remark 2. Let ¢ be any test on the characteristic roots of S,S;!.
Then we can write the corresponding power and the conditional power
as B,0, ;) and B,(D;|R), respectively. Then from the proof of Theorem
2 it follows that if ,(D;|R) increases monotonically in each 4, 58,06, ¢))
has the same monotonicity property as in Theorem 2. For the mono-
tonicity results for 8,(D;|R), see Das Gupta, Anderson and Mudholkar
[4] and Perlman and Olkin [8].

Remark 3. Under the assumption of CZ,=0 it follows from Re-
mark 1 and Fujikoshi [5] that the power of the likelihood ratio test
procedure depends only on the characteristic roots w,=--- 2w, of 2=
CL, =278 C"{C(A’A)'C"} 'ICE,2%'? and increases monotonically in each
;.

4. Asymptotic nonnull distribution of 4

In this section we consider asymptotic approximations for the power
of the likelihood ratio test procedure when p and ¢ are fixed and the
sample size N is large. We may write the power with a level of sig-
nificance a as

4.1) B4, &; )=P (—mlog A=u)
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where m=N—k—p,+(g—»,—1)/2 and the u is determined such that
P(—mlog Azu|H)=a. Since under H, A has a Wilks’ lambda distri-
bution A(p, N—k—p,, q), the u can be approximated by the formula
(cf. Anderson [1], p. 208)

4.2) P(—mlog A<x|H,)
=P (= 0)+4ooss i+ ¢ —5) (P (1} =2)
~P (1<)} +0(m™")

where f=p,q. In the following we consider asymptotic nonnull distri-
butions of —m log 4.

First we assume that (=((;, {;)=0(1). Then we have 4=0,1).
From Sugiura and Fujikoshi [11] we can write the conditional charac-
teristic function of —m log 4 as

(4.3) #(t| X1, Wi) =¢(4)+0,(m™?)
where

iy it
(4.4) &(d)=(1—2it)~"" exp ["1—_26 tr A]

: 18 .
X [1 + S a-2i f}

and
a(d)=(p;+q+1)tr 4,
a(d)=—(p+q+1) trd+tr £,  ay(d)=—tr L.

(4.5)

Noting that 4=2-—m~'X,(m W) X/{+m 7 {X,(m ™ W) X/} RE,, it
can be shown that

(46  EW@D)=¢@+5—(1—2t) " exp | L tr 0]
2m 1—-24t
X [1—Q1—2it)""](p, tr 2+tr {6C,)+0(m™)
where 2=, and =_,. By formally inverting (4.6) we obtain an
asymptotic expansion given by Theorem 3. The derivation of the as-

ymptotic expansion will be justified by proving E (0,(m™?)=0(m™?) and
the existence of a valid asymptotic expansion for P (—m log 4=x).

THEOREM 3. Under {=0(1), the following asymptotic formula for
the nonnull distribution of —m log A holds for large N.

4.7 P(—mlog A=)
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1 3
=Gf(x . CDZ)‘I'W j2=1 aj(.Q)G,.,.zj(x . (02)
+.§}n_ (D tr 2+t LOL)[G (22 ) —Gyro(@: o))] +O(m™?)

where m=N—k—p,+(@—p.—1)/2, f=pq, o’'=(tr2)/2, 2=, 0=,
the coefficients a,-) are given by (4.5) and G,(x: o) denotes the distri-
bution function of a monmcentral chi-square variate with f degrees of
freedom and noncentrality parameter o’

Next we assume that {=+mL, where L is a fixed matrix. Con-
sider the asymptotic distribution of

(4.8) A=vm{—log A—log |I+Q]}

where Q=LJ{(I+L,L))'L,, L=(L,, L,) and L;:qXp,, Under {=vmL
we have

4.9) —1—A=Q-I-—LM’(LXVL{—ZL{—LIZ’)M+O,,(m‘1)
m vm

where M=(I+L,L)'L,, Z=X,—¢, and V=vVm(m ‘Wy—I). Let T,=

vm((1/m)S.—I) and T,=+m((1/m)S,—Q). Then it is seen (cf. Sugiura

[12]) from (4.9) that

(4.10) E [exp {it(tr AT, +tr BT}
=exp [—t*{tr A’+2 tr QB*+tr (L MBM'L,)*
+2 tr LLMBM'MBM’'L,} 1(1+0(m %))

where A and B are any symmetric matrices. This show that 7T, and
T, converge in law to p(p+1)/2 variate normal distributions as m tends

to infinity. We can express A as
(4.11) A=tr {1+ Q™ —I} T4 tr I+ Q) T, +0,(m ™) .
Applying a theorem on limiting distributions (¢f. Anderson [2]), we have

THEOREM 4. Under (=+vmL the limiting distribution of A is N(O,
@), where a*=2{p,—tr I+Q)}+2 tr {LIM(I+Q)"'M'L.}>+4 tr L'M(I+ Q)™
M'M(I+Q)'M'L,, where Q=L{(I+L,L))"'L, and M=(I+L,L])"'L,.

The statistic 4 defined by (1.4) is also the likelihood ratio test sta-
tistic for testing H,: CI'=0 given CZ,=0. The approximations for the
nonnull distribution of 4 given CZ,=0 are given by (4.7) and Theorem
4 with ;=0 and {={C(A'A)"'C'}*CE,X;}*. Further asymptotic ex-
pansions in this case have been obtained by Fujikoshi [6].
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