THE POWER OF THE LIKELIHOOD RATIO TEST FOR ADDITIONAL INFORMATION IN A MULTIVARIATE LINEAR MODEL

YASUNORI FUJIKOSHI

(Received Dec. 15, 1980; revised Mar. 20, 1981)

Summary

This paper deals with the likelihood ratio test for additional information in a multivariate linear model. It is shown that the power of the likelihood ratio test procedure has a monotonicity property. Asymptotic approximations for the power are also obtained.

1. Introduction

Let Y be an observed $N \times p$ matrix of p variables y_1, \dots, y_p on each of N individuals. We assume that the N rows of Y are independently distributed according to p variate normal distributions with the common covariance matrix Σ and expectations given by

$$(1.1) E(Y) = AE$$

where A is a known $N \times k$ matrix of rank k and Ξ is a $k \times p$ matrix of unknown parameters. We partition Ξ and Σ as

(1.2)
$$E = (E_1, E_2) \quad \text{and} \quad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}_{p_2}^{p_1}$$

respectively. Consider the problem of testing the hypothesis (Rao [9], [10])

(1.3)
$$H_0: C\Gamma = 0$$
 against $H_1: C\Gamma \neq 0$

where C is a known $q \times k$ matrix of rank q, $\Gamma = \Xi_2 - \Xi_1 \beta$ and $\beta = \Sigma_{11}^{-1} \Sigma_{12}$. From McKay [7] the hypothesis H_0 can be interpreted as the hypothesis that $\mathbf{y}'_2 = (y_{p_1+1}, \dots, y_p)$ supplies no additional information about departures from nullity of the hypothesis $\tilde{H}_0 : C\Xi = 0$, independently of

AMS 1970 subject classifications: Primary 62H15; Secondary 62H10.

Key words and phrases: Power of likelihood ratio test, additional information, asymptotic expansions, nonnull distribution, multivariate linear model.

$$y_1'=(y_1,\cdots,y_{p_1}).$$

Let W and B be the matrices of sums and products due to error and departure from the hypothesis in the problem of testing $\tilde{H}_0: C\Xi$ =0 against $\tilde{H}_1: C\Xi \neq 0$, i.e., $W=Y'(I-A(A'A)^{-1}A')Y$ and $B=Y'A(A'A)^{-1} \cdot C' \{C(A'A)^{-1}C'\}^{-1}C(A'A)^{-1}A'Y$. Then the likelihood ratio criterion for testing H_0 against H_1 is an increasing function of

$$(1.4) \qquad \Lambda = |S_e|/|S_e + S_h|$$

where $S_e = W_{22.1} = W_{22} - W_{21}W_{11}^{-1}W_{12}$, $S_h = W_{22} + B_{22} - (W_{21} + B_{21})(W_{11} + B_{11})^{-1} \cdot (W_{12} + B_{12}) - W_{22.1}$ and W_{ij} and B_{ij} are submatrices of W and B_i , respectively, partitioned in the manner of Σ . In this paper we shall discuss about the distributions of S_e and S_h . Using the distributional results we shall show that the power of the likelihood ratio test procedure has a monotonicity property. Further asymptotic nonnull distributions of Λ are obtained.

2. The distributions of S_e and S_h

Consider the partitioning of Y into the sub-observation matrices of the first p_1 variables and the last p_2 variables as (Y_1, Y_2) . Given Y_1 , the N rows of Y_2 are independently distributed according to p_2 variate normal distributions with the common covariance matrix $\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21} \cdot \Sigma_{11}^{-1} \Sigma_{12}$ and expectations given by

(2.1)
$$E(Y_2|Y_1) = A\Gamma + Y_1\beta.$$

Under the conditional setup the testing problem (1.3) can be regarded as one of a linear hypothesis in a multivariate linear model. Further, since Λ is also the likelihood ratio statistic under the conditional model, it is implicitly known that the conditional distribution of Λ given Y_1 is a Wilks' lambda distribution. Here we shall give a direct proof of the result and further distributional results on S_h . Since W and B are independently distributed as a central Wishart distribution $W_p(N-k,\Sigma)$ and a noncentral Wishart distribution $W_p(q,\Sigma;\Xi'C'\{C(A'A)^{-1}\cdot C'\}^{-1}C\Xi)$, respectively, we may write W and B as U'U and X'X, respectively, where the rows of $U:(N-k)\times p$ and $X:q\times p$ are independently distributed according to $N_p(\cdot,\Sigma)$, E(U)=0 and $E(X)=\{C(A'A)^{-1}C'\}^{-1/2}\cdot C\Xi=\eta$. Let U, X and η decompose as $U=(U_1,U_2)$, $X=(X_1,X_2)$ and $\eta=(\eta_1,\eta_2)$, respectively, where $U_1:(N-k)\times p_1$, $X_1:q\times p_1$ and $\eta_1:q\times p_1$. Noting that $(I+X_1W_{11}^{-1}X_1')^{-1}=I-X_1(X_1'X_1+W_{11})^{-1}X_1'$,

$$(2.2) S_h = (X_2 - X_1 W_{11}^{-1} W_{12})' (I + X_1 W_{11}^{-1} X_1')^{-1} (X_2 - X_1 W_{11}^{-1} W_{12}).$$

Hence we can express S_e and S_h as Z_2/FZ_2 and Z_2/GZ_2 , respectively, with

 $Z_2' = (X_2', U_2'),$

$$F = \begin{pmatrix} 0 & 0 \\ 0 & I - U_1(U_1'U_1)^{-1}U_1' \end{pmatrix},$$

$$G = (I, -X_1W_{11}^{-1}U_1')'(I + X_1W_{11}^{-1}X_1')^{-1}(I, -X_1W_{11}^{-1}U_1').$$

Given $Z_1' = (X_1', U_1')$ the rows of Z_2 are independently distributed according to p_2 variate normal distributions with the common covariance matrix $\Sigma_{12.1}$ and expectations given by

$$\mathrm{E}\left(Z_{2} \mid Z_{1}\right) = \left(egin{array}{c} ilde{\eta}_{2} + X_{1} oldsymbol{eta} \ U_{1} oldsymbol{eta} \end{array}
ight)$$

where

(2.3)
$$\tilde{\eta}_2 = \{C(A'A)^{-1}C'\}^{-1/2}C\Gamma.$$

Noting, that $F^2 = F$, $G^2 = G$, FG = 0 and $E(Z_2 | Z_1)G E(Z_2' | Z_1) = \tilde{\eta}_2'(I + X_1 + X_1')^{-1}\tilde{\eta}_2$, we have

THEOREM 1.

- (1) S_e has a central Wishart distribution $W_{p_2}(N-k-p_1, \Sigma_{22.1})$. Given $R = (I + X_1W_{11}^{-1}X_1')^{-1}$,
 - (2) S_h has a noncentral Wishart distribution $W_{p_2}(q, \Sigma_{22.1}; \tilde{\eta}_2' R \tilde{\eta}_2)$,
 - (3) S_e and S_h are independent.

Further, the rows of X_1 are independently distributed according to p_1 variate normal distributions with the common covariance matrix Σ_{11} and expectations given by $E(X_1) = \eta_1$, W_{11} has a central Wishart distribution $W_{p_1}(N-k, \Sigma_{11})$ and X_1 and W_{11} are independent.

Remark 1. Under the assumption of $\eta_1=0$, i.e., $C\Xi_1=0$, the distributions of S_e and S_h are essentially the same as ones of the matrices due to error and departure from hypothesis in a general MANOVA model (cf. Fujikoshi [5]).

3. Monotonicity of the power of Λ

When we consider the distribution of Λ , we may assume without loss of generality that

(3.1)
$$S_e \sim W_{p_2}(N-k-p_1, I), S_h \sim W_{p_2}(q, I; \Delta) \text{ given } R,$$

where $\Delta = \zeta_2' R \zeta_2$ and $\zeta_2 = \tilde{\eta}_2 \Sigma_{22,1}^{-1/2},$
 $W_{11} \sim W_{p_1}(N-k, I) \text{ and } E(X_1) = \zeta_1 = \eta_1 \Sigma_{11}^{-1/2}.$

Since the conditional power of the likelihood ratio test procedure de-

pends only on the characteristic roots $\delta_1 \ge \cdots \ge \delta_{p_2}$ of Δ , the unconditional power depends on both $\theta = \zeta_2 \zeta_2'$ and ζ_1 . We can write the power and the conditional power of the likelihood ratio test procedure as $\beta_A(\theta, \zeta_1)$ and $\beta_A(D_{\delta}|R)$, respectively, where $D_{\delta} = \text{diag}(\delta_1, \cdots, \delta_{p_0})$. Then

(3.2)
$$\beta_{\Lambda}(\Theta, \zeta_1) = \mathbb{E} \left(\beta_{\Lambda}(D_{\delta} | R) \right).$$

Using the result due to Das Gupta, Anderson and Mudholkar [4] that $\beta_{\lambda}(D|R)$ increases monotonically in each δ_{i} , we have

THEOREM 2. If $\theta^* = \zeta_2^* \zeta_2^* \le \theta = \zeta_2 \zeta_2'$, then

(3.3)
$$\beta_{A}(\Theta^{*}, \zeta_{1}) \geq \beta_{A}(\Theta, \zeta_{1}).$$

PROOF. It is sufficient to show that $\delta_i^* \ge \delta_i$, where $\delta_1^* \ge \cdots \ge \delta_{p_2}^*$ are the characteristic roots of $\Delta^* = \zeta_2^* R \zeta_2^*$. Then the inequality can be proved as follows:

where $ch_i(\cdot)$ means the *i*th largest characteristic root of a matrix.

Remark 2. Let ϕ be any test on the characteristic roots of $S_nS_e^{-1}$. Then we can write the corresponding power and the conditional power as $\beta_{\phi}(\Theta, \zeta_1)$ and $\beta_{\phi}(D_{\delta}|R)$, respectively. Then from the proof of Theorem 2 it follows that if $\beta_{\phi}(D_{\delta}|R)$ increases monotonically in each δ_i , $\beta_{\phi}(\Theta, \zeta_1)$ has the same monotonicity property as in Theorem 2. For the monotonicity results for $\beta_{\phi}(D_{\delta}|R)$, see Das Gupta, Anderson and Mudholkar [4] and Perlman and Olkin [8].

Remark 3. Under the assumption of $C\Xi_1=0$ it follows from Remark 1 and Fujikoshi [5] that the power of the likelihood ratio test procedure depends only on the characteristic roots $\omega_1 \ge \cdots \ge \omega_{p_2}$ of $\Omega = \zeta_2'\zeta_2 = \sum_{22.1}^{-1/2} \Xi_2'C' \{C(A'A)^{-1}C'\}^{-1}C\Xi_2\Sigma_{22.1}^{-1/2}$ and increases monotonically in each ω_i .

4. Asymptotic nonnull distribution of \varLambda

In this section we consider asymptotic approximations for the power of the likelihood ratio test procedure when p and q are fixed and the sample size N is large. We may write the power with a level of significance α as

(4.1)
$$\beta_{\Lambda}(\Theta, \zeta_1; \alpha) = P(-m \log \Lambda \ge u)$$

where $m=N-k-p_1+(q-p_2-1)/2$ and the u is determined such that $P(-m \log \Lambda \ge u | H_0) = \alpha$. Since under H_0 Λ has a Wilks' lambda distribution $\Lambda(p, N-k-p_1, q)$, the u can be approximated by the formula (cf. Anderson [1], p. 208)

(4.2)
$$P(-m \log \Lambda \leq x \mid H_0)$$

$$= P(\chi_f^2 \leq x) + \frac{p_2 q}{48m^2} (p_2^2 + q^2 - 5) \{ P(\chi_{f+4}^2 \leq x) - P(\chi_f^2 \leq x) \} + O(m^{-4})$$

where $f = p_2q$. In the following we consider asymptotic nonnull distributions of $-m \log \Lambda$.

First we assume that $\zeta = (\zeta_1, \zeta_2) = O(1)$. Then we have $\Delta = O_p(1)$. From Sugiura and Fujikoshi [11] we can write the conditional characteristic function of $-m \log \Lambda$ as

(4.3)
$$\phi(t \mid X_1, W_{11}) = \phi(\Delta) + O_v(m^{-2})$$

where

(4.4)
$$\phi(\Delta) = (1 - 2it)^{-f/2} \exp\left[\frac{it}{1 - 2it} \operatorname{tr} \Delta\right] \\ \cdot \times \left[1 + \frac{1}{4m} \sum_{j=1}^{3} a_{j}(\Delta)(1 - 2it)^{-j}\right]$$

and

(4.5)
$$a_1(\Delta) = (p_2 + q + 1) \operatorname{tr} \Delta,$$

$$a_2(\Delta) = -(p_2 + q + 1) \operatorname{tr} \Delta + \operatorname{tr} \Delta^2, \qquad a_3(\Delta) = -\operatorname{tr} \Delta^2.$$

Noting that $\Delta = \Omega - m^{-1}\zeta_2'X_1(m^{-1}W_{11})^{-1}X_1'\zeta_2 + m^{-2}\zeta_2'\{X_1(m^{-1}W_{11})^{-1}X_1'\}^2R\zeta_2$, it can be shown that

(4.6)
$$\mathrm{E}\left(\phi(\varDelta)\right) = \phi(\varOmega) + \frac{1}{2m} (1 - 2it)^{-f/2} \exp\left[\frac{it}{1 - 2it} \operatorname{tr} \varOmega\right]$$

$$\times [1 - (1 - 2it)^{-1}] (p_1 \operatorname{tr} \varOmega + \operatorname{tr} \zeta_1' \Theta \zeta_1) + O(m^{-2})$$

where $\Omega = \zeta_2'\zeta_2$ and $\Theta = \zeta_2\zeta_2'$. By formally inverting (4.6) we obtain an asymptotic expansion given by Theorem 3. The derivation of the asymptotic expansion will be justified by proving $E(O_p(m^{-2})) = O(m^{-2})$ and the existence of a valid asymptotic expansion for $P(-m \log \Lambda \leq x)$.

THEOREM 3. Under $\zeta = O(1)$, the following asymptotic formula for the nonnull distribution of $-m \log \Lambda$ holds for large N.

(4.7)
$$P(-m \log \Lambda \leq x)$$

$$egin{aligned} &= G_{f}(x \colon \omega^{2}) + rac{1}{4m} \sum \limits_{j=1}^{3} a_{j}(arOmega) G_{f+2j}(x \colon \omega^{2}) \ &+ rac{1}{2m} (p_{1} \operatorname{tr} arOmega + \operatorname{tr} \zeta'_{1} \Theta \zeta_{1}) [G_{f}(x \colon \omega^{2}) - G_{f+2}(x \colon \omega^{2})] + O(m^{-2}) \end{aligned}$$

where $m=N-k-p_1+(q-p_2-1)/2$, $f=p_2q$, $\omega^2=(\operatorname{tr} \Omega)/2$, $\Omega=\zeta_2'\zeta_2$, $\theta=\zeta_2\zeta_2'$, the coefficients $a_j(\cdot)$ are given by (4.5) and $G_j(x:\omega^2)$ denotes the distribution function of a noncentral chi-square variate with f degrees of freedom and noncentrality parameter ω^2 .

Next we assume that $\zeta = \sqrt{m}L$, where L is a fixed matrix. Consider the asymptotic distribution of

(4.8)
$$\tilde{\Lambda} = \sqrt{m} \left\{ -\log \Lambda - \log |I + Q| \right\}$$

where $Q=L_2'(I+L_1L_1')^{-1}L_2$, $L=(L_1,L_2)$ and $L_1:q\times p_1$. Under $\zeta=\sqrt{m}L$ we have

(4.9)
$$\frac{1}{m} \Delta = Q + \frac{1}{\sqrt{m}} M'(L_1 V L'_1 - Z L'_1 - L_1 Z') M + O_p(m^{-1})$$

where $M = (I + L_1 L_1')^{-1} L_2$, $Z = X_1 - \zeta_1$ and $V = \sqrt{m} (m^{-1} W_{11} - I)$. Let $T_e = \sqrt{m} ((1/m) S_e - I)$ and $T_h = \sqrt{m} ((1/m) S_h - Q)$. Then it is seen (cf. Sugiura [12]) from (4.9) that

(4.10)
$$\begin{split} & \text{E}\left[\exp\left\{it(\operatorname{tr} A T_e + \operatorname{tr} B T_h)\right\}\right] \\ & = \exp\left[-t^2\{\operatorname{tr} A^2 + 2\operatorname{tr} Q B^2 + \operatorname{tr} (L_1' M B M' L_1)^2 \right. \\ & \left. + 2\operatorname{tr} L_1' M B M' M B M' L_1\right\}\left[(1 + O(m^{-1/2}))\right] \end{split}$$

where A and B are any symmetric matrices. This show that T_e and T_h converge in law to p(p+1)/2 variate normal distributions as m tends to infinity. We can express $\tilde{\Lambda}$ as

(4.11)
$$\tilde{\Lambda} = \operatorname{tr} \{ (I+Q)^{-1} - I \} T_e + \operatorname{tr} (I+Q)^{-1} T_h + O_p(m^{-1/2}) .$$

Applying a theorem on limiting distributions (cf. Anderson [2]), we have

THEOREM 4. Under $\zeta = \sqrt{m}L$ the limiting distribution of \tilde{A} is $N(0, \sigma^2)$, where $\sigma^2 = 2\{p_2 - \operatorname{tr}(I+Q)^{-2}\} + 2\operatorname{tr}\{L_1'M(I+Q)^{-1}M'L_1\}^2 + 4\operatorname{tr}L_1'M(I+Q)^{-1}M'M(I+Q)^{-1}M'L_1$, where $Q = L_2'(I+L_1L_1')^{-1}L_2$ and $M = (I+L_1L_1')^{-1}L_2$.

The statistic Λ defined by (1.4) is also the likelihood ratio test statistic for testing $H_0: C\Gamma = 0$ given $C\Xi_1 = 0$. The approximations for the nonnull distribution of Λ given $C\Xi_1 = 0$ are given by (4.7) and Theorem 4 with $\zeta_1 = 0$ and $\zeta_2 = \{C(A'A)^{-1}C'\}^{-1/2}C\Xi_2\Sigma_{22.1}^{-1/2}$. Further asymptotic expansions in this case have been obtained by Fujikoshi [6].

Acknowledgements

The author would like to thank the referee for his helpful comments.

HIROSHIMA UNIVERSITY

REFERENCES

- Anderson, T. W. (1958). Introduction to Multivariate Statistical Analysis, Wiley, New York.
- [2] Anderson, T. W. (1963). Asymptotic theory for principal component analysis, Ann. Math. Statist., 34, 122-148.
- [3] Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics, 1, Interscience, New York.
- [4] Das Gupta, S., Anderson, T. W. and Mudholkar, G. (1964). Monotonicity of the power functions of some tests of the multivariate linear hypothesis, Ann. Math. Statist., 35, 200-205.
- [5] Fujikoshi, Y. (1973). Monotonicity of the power functions of some tests in general MANOVA models, Ann. Statist., 1, 388-391.
- [6] Fujikoshi, Y. (1974). Asymptotic expansions of the non-null distributions of three statistics in GMANOVA, Ann. Inst. Statist. Math., 26, 289-297.
- [7] McKay, R. J. (1977). Simultaneous procedures for variable selection in multiple discriminant analysis, *Biometrika*, 64, 283-290.
- [8] Perlman, M. D. and Olkin, I. (1980). Unbiasedness of invariant tests for MANOVA and other multivariate problems, Ann. Statist., 8, 1326-1341.
- [9] Rao, C. R. (1965). Linear Statistical Inference and Its Applications, Wiley, New York.
- [10] Rao, C. R. (1966). Covariance adjustment and related problems in multivariate analysis, Multivariate Analysis—I (ed. P. R. Krishnaiah), Academic Press, New York, 87-103.
- [11] Sugiura, N. and Fujikoshi, Y. (1969). Asymptotic expansions of the non-null distributions of the likelihood ratio criteria for multivariate linear hypothesis and independence, Ann. Math. Statist., 40, 942-952.
- [12] Sugiura, N. (1973). Further asymptotic formulas for the non-null distributions of three statistics for multivariate linear hypothesis, Ann. Inst. Statist. Math., 25, 153-163.