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"~ Summary

A general method based on “delta sequences” due to Walter and
Blum [12] is extended to sequences of strictly stationary mixing random
variables having the same marginal distribution admitting a Lebesgue
probability density function. It is proved that, under certain condi-
tions, the rate of mean square convergence obtained in the i.i.d. case
by Walter and Blum, continues to hold.

1. Introduction and definitions

Recently, Walter and Blum [12] proposed a method for density
estimation based on a random sample of n observations, which is more
general than most previously known techniques and they established
a rate of mean square convergence for densities in Sobolev spaces and
for densities satisfying Lipschitz conditions.

In the literature there are several types of density estimates and
for surveys of the subject we refer the reader to Wegman [13], Freyer
[6], and Wretz and Schneider [14]. While most papers written on den-
sity estimation deal with the case of independent identically distributed
(i.i.d.) random variables, some of the most recent work is devoted to
the case when sampling from stationary sequence of dependent vari-
ables, see Bosq [3], Borwanker [2], and Ahmad and Lin [1] among
others.

In this note we extend the method of delta-sequences of Walter
and Blum [12] and obtain estimates of the marginal densities of strict-
ly stationary mixing processes and study the rate of mean square con-
vergence of these estimates.
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DEFINITION 1.1. Let {X,} be a sequence of random variables and
let G(m, n) denote the o-field generated by X,.i, ---, X,.,. for all 0=
m<n=oco. Further let Ae g1, m) and Be G(m+n, ) and define
integer-valued functions ¢,(-), 1=1,2,3 such that ¢,n) |0 as n— oo,
©=1,2,3. Then {X,} is said to be:

(i) ¢rmixing if |P (AB)—P (4) P (B)|=¢y(n),
(ii) ¢,-mixing if |P (AB)—P (A) P (B)|<¢y(n) P (4), and
(iii) ¢srmixing if |P (AB)—P (AB)—P (B)|=<¢s(n) P (4A) P (B).

Note that ¢,-mixing is also known as “strong mixing” and it is
due to Rosenblatt [10], while the ¢,-mixing is sometimes called “ uni-
form mixing” and is due to Ibragimov [7], and finally, ¢;-mixing is
due to Philipp [9]. Note also that, ¢,-mixing implies ¢,-mixing which
in turn implies ¢;-mixing but the converses are not necessarily true.
The next definition is due to Walter and Blum [12].

DEFINITION 1.2. A sequence {d.(x, t)} of bounded measurable func-
tions defined on IXI, where I is an open subset of reals, is said to be
“a delta sequence” on I if for every x €I and each C* function ¢
with support in I we have

(1.1) SI 3., p()dt — ()  as m— oo

Using the first # observations from a sequence of strictly station-
ary ¢;-mixing random variables, define the estimator:

(1.2) Fral@)=n"1 z ou(, X)) .

Walter and Blum [12] give several examples demonstrating the gener-
ality of (1.2). These include the following:
(a) On(x, t)=g.(x—1t) with g,(y) the density of the sample mean,
and
(b) d.(x, t)=my,-1(x—t), where y,-1(-) is the indicator function of
the interval [0, m™'].
Let W (I) denote the Sobolev space of functions defined on I
whose first s—1 derivatives are absolutely continuous and whose s-th

derivative is in L,. In order to obtain rates in E[ f,,,,,,(ac)— F(@)],
Walter and Blum [12] restrict their attention to two classes of delta
sequences ; the class of delta sequences that has a (s,q) rate m~* and
the class of dominated delta sequences of Fejer type. For the former
they obtain uniform rate while for the latter they obtain a pointwise
rate. For the sake of completeness we list these two definitions.

DEFINITION 1.3. Let {d,(x, t)} be a delta sequence on I=(a, b) such
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that:
(i) On(x, -)e L¥a,b) for all xel.
(i) ||on(x, -)];=0(m'?) uniformly in z€I.

Let s be a positive integer; denote by 85 ¥(x, t) the antiderivative
of order s with respect to ¢ of d,(x,t) which, together with its first
(s—1) derivatives, is zero at a. Denote by 35 9(¢) the function (x—t)%/
(s—1)!. For such an s, suppose that there are numbers ¢=1 and 0<g3
=<s+q'—1 such that:

(ili) o5 (=, -)—a59(+) € LYa, b) for all xeI.

@iv) 165 (x, -)—85(+)],=O0(m?) uniformly in x€l.

(v) 65 (x, b)—05®(b)|=0(m~?*) uniformly in €I and for k=1, .--,s.
Then {d.(x,t)} is said to have (s, q) rate m™".

Some of the examples cited by Walter and Blum satisfy this defi-
nition.

DEFINITION 1.4. A delta sequence {0,.(x, t)} is said to be dominated
by a kernel K if for z,t¢ R,
(i) o.(z,t)=0, S On(x, )dt=1, and 9,(x, t)=CmK(m(t—x)).

(ii) K(w) is such that SK(u)du:l and SlulK(u)du<oo for ¢=1 or

S ult In, Ju| K*(u)du< oo for g>1.
A dominated delta sequence defined on (—oco, ) is said to be a Fejer
type if its dominating kernel is [z(1+¢%)]".

The purpose of the present note is to obtain conditions under which

the Walter and Blum [12] rates of mean square convergence for fm,n(x)
continue to hold under each of the above three types of mixing strict-
ly stationary random variables, e.g., we show that the rates obtained
by Walter and Blum [12] continue to hold for ¢;mixing assuming that

i¢a(n)<oo, which holds true, e.g., if the variables are taken from
n=1

a Markov process and hence the results of Walter and Blum [12] con-
tinue to hold for Markov sequences. A bit stronger conditions are
required for ¢, and ¢,-mixings.

2. Rates of mean square error

THEOREM 2.1. Let s=1 and let fe W(I). Let {3,} be a delta
sequence of (s, q) rate m~* where q satisfies p~'+q'=1.

(i) If{X,} is strictly stationary ¢,-mixing such that :V;‘_, X)) e
<oo for some ri>1 and r;>1 with ri'+r;'<1, then
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2.1) E [£,(&)—f@)=0(m t+a9)
uniformly on I, where f,, is defined to be f,,,,,. of (1.2) with m=nY"+»,
(ii) If {X.} 1s strictly stationary ¢,-mixing such that i‘, [ge(m)]" "
<oo for some r>1, then (2.1) continues to hold. -
(iii) If {X.} 1s strictly stationary ¢smixing such that é @y(n) < oo,
then (2.1) continues to hold. "
ProOF. (i) Note that
(2.2) E [ @)= f @)=V £, i(@)+[E fn(@)— @) .
But it follows from (4) of Walter and Blum [12] and the stationarity
of {X,} that

@3)  [Efu@—f@F=|| a 05@dt- 6] 0om).
Next, we need to evaluate Var fm,,,(a:). Again by stationarity of {X.,},
(2.4) Varf, (o)

=n"'Vard,(x, X;)+2n™* jzi‘,z (n—j+1) Cov (3,(, X1), dn(x, X)) .

But again, it follows from (3) of Walter and Blum [12] that Var 4, (x,
X))=0(m), uniformly in x € I. Next, by an application of a Lemma of
Deo [4] we see that for all j=2, --., n,

(2.5) |Cov (3n(x, X1), 0n(, X)))|
S10[py()] 77 [B |3, X)) [E [8u(x, X207,

for some 7,>1, r,>1 such that r{'+7r;'<1. But if r€ (1, 2], then
(2.6) EY"|3.(x, X)) <EZ|3,.(x, X)PI fllolldn(, )I]2=0(m"),

where || fl|l.<oo, since

£ —fr@)I=p || [(F@PF@IdeSpIL 1P,
While if r=2,
EYr |02, X)) <C, EV" |0,(x, X)) FSO(mMY)SO(m'?) ,

since {38,} is a delta sequence. Substituting into the right hand side
of (2.6) we get for sufficiently large m and a positive constant C; that
for m sufficiently large

(2.7) |Cov (3n(x, X1), dn(@, X)) Cilpi( D)™ 'm
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Hence
@8) |3 (n—+1) Cov (u(a, X), u(x, X,)

<Cim 33 (n—j+ D)1 <Cmm. 33 [()] =777
<Cmnm,
since g‘{ [¢()]' 71" <oo. Thus collecting terms we arrive at
(2.9) E [f (@) —f @)]'=0(m/n)+O0(n").
Choosing m =n'**?*” the desired conclusion follows.
(ii) Proceed exactly as in Part (i) except we use Lemma 17.2.3
of Ibragimov and Linnik [8] in (2.5) above to get
(2.10) [Cov (3n(x, X)), 3n(x, X,))|
<2 NI E [0n(z, X)INTE 3a(2, X,
where r;i'=1—7r{".

(iii) Again the proof follows that of Part (i) but we put Lemma
3 of Philipp [9] in use and get

(2'11) ICOV (am(x’ Xl)r am(w: Xj))|§¢3(j) E Iam(xy Xl)! E Iam(w9 XJ)l
=¢:(7) E[0.(x, X)) .

The theorem is now proved.

Remark 2.1. If the summability conditions of ¢,’s are difficult to
verify, it is possible to reduce them and obtain a somewhat weaker
rates of the mean square convergence, precisely, if

(i) ¢m)=0(m ve4-ri'-rD) for some 7, r,>1 and r'+7r;'<1, or

(ii) @y(m)=0(n"Y4"""") for some r>1, or

(ili) ¢y(m)=0(n""), then

(2.12) E [fu(#)— f(@)]'=0(n #4425 In 3) .

In order to demonstrate that (2.12) is valid we observe from (2.8)
that

j% (n—3+1) Cov (3.(2, X)), dn(x, X;))| =Cymn ,é [pu(g) o

<Cmnlnn,

for sufficiently large =, since ¢,(n)=O0(n"V4-7i"-r3D), Thus we obtain
a bound in (2.9) equal to O(lnn)[O(m/n)+O(m~%)] from which (2.12)
follows with the choice m=mn""**#,

Note also that taking Inn<n" for some y>0, then we get under
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either of the above conditions that
(2.13) E [fx)— f (@) =0(m 11+ |

Remark 2.2. A delta sequence which is dominated by a kernel K
in Definition 1.4 has (1, q) rate m¢, see Corollary 1 of Walter and
Blum [12], and thus Theorem 2.1 above applies for such sequences.

Next, we obtain a pointwise rate of convergence of the mean
square error for the class of dominated delta sequence of Fejer type
when f(z) is Lipschitz of order 2, 0<i<1.

THEOREM 2.2. Let f be a bounded density satisfying Lipschitz con-
dition of order 2, 0<2<1 at x=0. Let {3,} be a delta sequence of Fejer

type.

(i) If{X.,} is strictly stationary ¢,-mixing such that 2 [gy(n)]t-i' "
<oo for some ri>1 and r,>1 such that r7*+r;7'<1, then the estimator
given by fo= f,” with m=[n""**] and

2.14) Fun=Fun0) =07 310X,
satisfies
(2.15) E[f.— fO)P=0(n-1+va+w)

(i) If {X,} is strictly stationary -mixzing such that ) [po(n)] "
n=1
<oo for some r>1, then the conclusion in (2.15) continues to hold.
(i) If {X,} s strictly stationary ¢s-mixing such that i dy(n) < co,
n=1
then the conclusion in (2.15) continues to hold.
PrOOF. Again we shall prove Part (i) only, the other two parts

may be proven as in Theorem 2.1 above.
(i) Note that

(2.16) E [f,— f(O)F=Var f,+[E f,.— F(O)] .

But by splitting the integral into five parts, Walter and Blum [12],
Theorem 2, show that [E fn— FOP=0(n"%), with m=[n""+*], Thus
we need only to handle the first term in the right-hand side of (2.16).
By stationarity,

217) Var f,=n" Var ,(X)+207 3} (n—j+1) Cov (3.(X.), 3,(X)) -

But since {9,,} is a delta sequence of Fejer type, then n~! Var4,(X))=<
Cm/n for some constant C>0. Finally using a Lemma of Deo [4] we
get
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2.18) |n E (n—37+1) Cov (0,(X1), 3n(X))

<1007 [E0(X) [T TIE [0X)IF 33 (m—j+D){gi() 7
<10n7'C BV [3,( X)) BV [3,( X)),

since j% [¢1(j)]‘—r1_1_';1§g [¢:(n)]'"7""" < oo and using the stationarity of
{X,}. But by Definition 1.2, if r€ (1, 2],

(2.19) E o (X)) SEV [0.(X)f =0(m') ,

and if »>2, since {4,} is a delta function sequence, then

(2.20) E' |0 (X)I =C EV [0,(X)=0(m) =0(m'") .

Hence using (2.19) and (2.20) into (2.18) we easily see that

(2.21) n z (n—j+1) Cov (0.(X)), 0n(X,))=0(m/n) .

Now the desired conclusion follows from the fact that [E f,—f(0)l=
O(m/n)+0(m*), with m=n""*>,

Remark 2.3. As pointed out in Remark 2.1, if we reduce the
conditions on ¢,’s we obtain slower rates of E[ Fi—FO), in fact if in
Part (i) (Part (ii) or Part (iii)) we only assume that ¢,(n)=0(n"10"""-72")

(p:=0(nY4"r™) or ¢y(m)=0(n"")), then we obtain the rate
(2.22) E[f.—F(O)P=0(n"1+V+ In )

Thus taking In<n’ for some y>0 we get

(2.23) E [f—fOP=0(n /000,

Note also that in the i.i.d. case the rate of Theorem 2.1 is the best
possible for f € W(I), see Wahba [11], while the rate in Theorem 2.2
is the best possible for Lipschitz densities, see Farrell [5], hence our
results present conditions under which the best possible rates are ob-
tainable under ¢,-mixing conditions, =1, 2, 3.

UNIVERSITY OF PETROLEUM AND MINERALS

REFERENCES

[1] Ahmad, I. A. and Lin, P. E. (1975). Nonparametric estimation of probability density
functions for dependent variables with applications, under revision.

[2] Borwanker, J. (1971). Asymptotic theory of density estimation, Zeit. Wahrscheinlich-
keitsth., 20, 182-188.



254

[31]
[4]
[5]
(6]
[7]
[81]
[9]
[10]
[11]
[12]
[13]

[14]

IBRAHIM A. AHMAD

Bosq, D. (1973). Sur I'estimation de la densite d’un processes stationair et melangeant,
C.R. Acad. Sci. Paris, T 227, 535-538.

Deo, C. M. (1973). A note on empirical processes for strong mixing sequences, Ann.
Prob., 1, 870-875.

Farrell, R. H. (1972). On best obtainable asymptotic rates of convergence in estima-
tion of a density function at a point, Ann. Math. Statist., 43, 170-180.

Freyer, M. J. (1977). A review of some nonparametric methods of density estima-
tion, J. Inst. Math. Appl., 20, 335-354.

Ibragimov, I. A. (1962). Some limit theorems for stationary sequences, Theory Prob.
Appl., 7, 349-382.

Ibragimov, I. A. and Linnik, Yu. V. (1971). Independent and Stationary Sequences of
Random Variables, Walters-Noordhoff, Netherlands.

Philipp, W. (1969). The central limit theorem for mixing sequences of random vari-
ables, Z. Wahrscheinlichkeitsth., 12, 155-171.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition, Proc.
Nat. Acad. Sci. USA, 42, 43-47.

Wahba, G. (1975). Optimal convergence properties of variable knot, kernel, and or-
thogonal series methods for density estimation, Ann. Statist., 3, 15-29.

Walter, G. and Blum, J. (1979). Probability density estimation using delta-sequences,
Ann. Statist., T, 328-340.

Wegman, E. J. (1972). Nonparametric probability density estimation: I. A sum-
mary of available methods, Technometrics, 14, 316-327.

Wretz, W. and Schneider, B. (1979). Statistical density estimation: A bibliography,
Int. Statist. Review, 47, 155-175.



