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Summary

Stability theorems are derived for various characterizations of the
exponential distribution. In particular, we utilize a method which, to
some extent, unifies the proof of stability for a wide class of charac-
terizations.

1. Introduction

In their book, Galambos and Kotz [3] pointed out many open
problems concerning the stability of various characterizations of the
exponential distribution. Very recently, Shimizu [8] has produced re-
sults in this area, as a by-product of the study of functional equations.

Here, we also consider these problems, and derive stability theorems
using a straightforward approach. In particular, we use a method,
reminiscent of the proof of Gronwall’s inequality (cf. Hartman [4]),
which seems to unify the derivation of stability theorems for a fairly
large class of characterizations.

We should also mention that as regards the characterizations which
both Shimizu [8] and ourselves consider, the results do not appear to
be directly comparable since our assumptions seem to be weaker than
his, as are our conclusions.

2. Stability of characterizations involving order statistics

Throughout the paper, ¢ is a positive real number. X will be
a non-negative random variable having a continuous distribution funec-
tion F(x) where F'(0)=0; invariably, we use G(z)=1—F(x). Also, X, .,
denotes the kth order statistic in a random sample X, X, ---, X,
from X.

We first need a
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DEFINITION. The random variables (or vectors) U and V are e-
independent (in the sense of Ornstein), if

2.1) IP(Uec A|VeB)—P (Uc A)|<e

for all measurable subsets A and B of the probability spaces on which
U and V are defined respectively.

This definition is motivated by the work of Ornstein [7] (cf. Smoro-
dinsky [9], pp. 22-23). It is worth noting that the property of e-inde-
pendence is not symmetric in U and V; this obstacle can be easily
removed if necessary.

Our first result is to establish the stability of a theorem of Fisz
[2] (cf. [3], p. 46).

THEOREM 1. Suppose that F(x) is strictly increasing for x=0, and
that X,,—X,, and X, are e-independent. Then, there exists b>0 such
that

(2.2) sup |G(x)—exp (—bx)|<4e+(2e)2.
Tz
ProOOF. Since
P (X,,— X, <2 | X,,,=2)=(G(2) — G(z+2))/G(2)

for all =0 and almost all 2>0, then the e-independence of X,,— X,
and X, amounts to saying that

(2.3) [H(x)—1+(G(x+-2)/G(2))|<e

for all =0, almost all 2>0, where H(x) is the distribution function
of X;,—X;,. Letting z— 0 in (2.3), we obtain |H(x)—1+G(x)|<e for
all x=0, which when combined with (2.3) using the triangle inequality
shows that

2.4) G(x) —% <2,

that is, that G(x) ‘almost’ satisfies the lack of memory property.
The conclusion follows from Azlarov ([1], Theorem 1).

This result can be generalized (cf. Kagan, Linnik and Rao [5]) in
several ways.

THEOREM 2. For 1=k<n, if Xipn—Xin and X, ., are e-independ-
ent, where F(x) is strictly increasing, then there exists b>0 such that

(2.5) sup |G(@) — exp (—ba)| < (2e)*+4)/" 0.

Proor. Since for all =0, and almost all z>0,
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P (Xir1,n—Xin<2 | X, n=2)=1—(G(x+2)/G(2))" ™",
then we can proceed as before to deduce that
I(G(@))" " — (G(x+2)/G(2)" "< 2,
so that there exists >0 satisfying
(2.6) sup |(G(w))"™* —exp (—(n—k)bw)|<(2)" +4e .
From (2.6), (2.5) follows easily.

COROLLARY 1. Let U=X,,, U=X,,—X,., k=2, ---,n. With the
same assumptions on F, if the vector U=(U,, Us, ---, U,) and U, are e-
independent, then there exists b>0 such that

(2.7) S‘;p |G(x) —exp (—ba)| < (de+ (2)/A)VaD |

Proor. If U and U, are e-independent, then so are U, and U..
Thus, (2.7) holds by Theorem 2.

3. Stability of characterizations via conditional expectations

Our main result in this section is to determine the stability of
a theorem of Laurent [6] (cf. Galambos and Kotz [3], p. 31) under hy-
potheses weaker than those in the literature. For the rest of the paper,
we will assume that the random variable X has a finite mean p.

THEOREM 3. Let g(x) be a continuous decreasing function for 0=
x<oo, and further, let there be a positive constant ¢ such that g(x)=c
for all x=0. If for all =0,

3.1) |E(X—2|Xz2)—9(@)<e,

where 0<e<¢c, then

L _(*dy epp-2e)
(8.2) ey G=) g(x) exP( So g(y)) ‘ < cc—e)

PrOOF. We note that to choose ¢<c¢ is not unnatural, since we
are only interested in small e. To start the proof, since

E(X—2|X20)=|  GW)dy/Gw).,
then (8.1) is equivalent to

(3.3) (92)—e)G() < Hw) = 6wy < (g(@)+e)G(z)
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for all x=0. As G is continuous, then H is differentiable, and H'(x)
=—G(x). Thus, from (3.3), we get

(3.4) —(g(@) &) <H'(@)H@) < —(g®)+e)*, 220

which when integrated over the interval (0, z), shows that for x>0,

35 wexn(—| @w—erdy)<H@<pexp(-| (ow)+ody).

Combining (3.3) and (3.5), we have

@.6) g(w;)l+e exp(—S: g(;{e><G(x)<W% xp <_S: g(z%{te) '

At this point, some remarks are in order. A quick perusal of the
proof so far shows that it is possible to set e=0; then (3.6) becomes
an equality, and we have proved Laurent’s theorem without assuming
as in [6] and [3], that g is differentiable. To continue, we need an
upper bound for the function

)= y(wf)!—e oxp <—S: g(;l)z{ks>_ y&) exp<_8: 5%5_)> w20

Since

v(x>=ﬁexp<'sz g(;fﬂrJ {g&(& —exp (<] g(y)(j(g/)ﬂ) )

and by g(x) being decreasing,

_elf_ dy _ _
exp( . S el +e))gexp{ ex/g(x) (g(x) — )}

21—(ex/g(x)(g9(x)—¢)) ,
then we find that

_(F_dy 2 _
61 e@semexn(~| —H)a+o@)o@ @ —o).
By (3.1), p+e>g(0)=g(x)=c for all z; hence, from (3.7),
(3.8) W) Sep(@+pte) exp (—(u+2)"')/cHc—e)

<ep(p+2e)/cH(c—e) .
Similarly, it is easy to check that

w=ghmee ) e ) 2
> — et 28)/¢e—2),
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which together with (3.8) proves (3.2).

The special case g(x)=c has been treated using different methods
by Azlarov [1].

n

COROLLARY 2. Suppose that X =3 a;X;, n>1, where a, ---, a, are

1
real numbers with Z a,=1, and

(3.9) Slg)]E (X—2| X, ,=x)—c|<(n—1)e/n, O<e<ec.
Then
(3.10) sup\a(x)_exp (_ (n—1)z ) ‘ < ettt 2)

z20 ne (c 6)

PrROOF. It is easy to check as in [3] (Theorem 3.4.6), that

(n—1)
B(%1X,=0) =2+ 8 | yir ).

Thus, (3.9) becomes

3.11) G0~ |, 6wiy| <e6(@)

for all x=0. Comparing (3.11) with (3.3), we find that

(8.12) sup‘G(x) _ =D oyp <—— (n—L)x ) l <erpt2e)
220 ne ne c{c—e)

Since G(0)=1, then (3.12) implies that

(3.13) '1_ (n;I);z ' s;zz((;;-{_-g)e)

which along with (3.12) and the triangle inequality leads to (3.10).

Finally, we note that the methods used in this section can also be
used to obtain stability theorems for other characterizations such as
those in [5] (Theorem 13.6.4), [3] (Theorem 3.4.5) and [8] (Theorem 4)
since in all these cases, the hypotheses imply an inequality similar to
(3.3). We omit the details.
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