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Summary

Let X, Y be two discrete random variables with finite support and
X=Y. Suppose that the conditional distribution of Y given X can be
factorized in a certain way. This paper provides a method of deriving
the unique form of the marginal distribution of X (and hence the joint
distribution of (X,Y)) when partial independence only is assumed for
Y and X-Y.

1. Introduction

Properties of discrete distributions based on the conditional distri-
bution of a random variable (r.v.) Y for a given value of a r.v. X,
where X=Y, have attracted always attention. In most cases, (see
Moran [2], Chatterji [1], Patil and Seshadri [5]) the basic assumption
was that of independence between Y and X—Y. A very general result
along this line was the one of Patil and Seshadri [5]. They essentially
showed that when Y and X—Y are independent and the distribution
s(r|n) of Y|(X=n) is of the form a,b,_,/c, (where a,, b,, n=0,1,---
are sequences of non-negative real numbers whose convolution is ¢,),
then the distributions of ¥ and X—Y are of a power series form. As
corollaries of their result Patil and Seshadri showed that ¥ and X—Y
are Poisson r.v.’s when s(r|n) is binomial, negative binomial r.v.’s when
s(r|m) is negative hypergeometric, and binomial r.v.’s when s(r|n) is
hypergeometric.

Shanbhag [7] adopted the same form for the distribution of Y|(X=
n) but his result is more general, since he replaced the assumption of
full independence between Y and X—Y by an assumption of partial
independence. Roughly speaking Shanbhag proved that if Y|[(X=n) is
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of the form a,b,_./c, with a,>0, n=0,1,--- and b, b,>0; b,=0, n=2,
then P(Y=7r)=P(Y=r|X=Y) if and only if (iff) X has a power series
distribution. (The condition P(Y=7)=P(Y=7|X=Y) was employed
earlier by Rao and Rubin [6] to characterize the Poisson distribution
when Y|(X=n) was binomial (n, p) with p fixed and independent of =.
Since then this condition has become known as Rao-Rubin condition
(R-R condition)).

In a forthcoming paper Panaretos [3] extends Shanbhag’s result to
characterize left-truncated distributions (distributions of r.v.’s taking
values =k, k=0,1,---) by assuming that a,>0 for n=k only. The
characterizing condition in this case is P(Y=r|Y=k)=P (Y =r|X=Y).
Using Shanbhag’s theorem and Panaretos’s extension characterizations
can be obtained for the Poisson distribution (Y|(X=n)~binomial), the
negative binomial distribution (Y |(X=mn)~negative hypergeometric),
the left-truncated Poisson distribution (Y|(X=mn)~binomial), the left-
truncated negative binomial distribution (Y|(X=n)~negative hypergeo-
metric), the convolution of a Poisson with a left-truncated Poisson (Y|
(X=mn)~left-truncated binomial), and the convolution of a negative bi-
nomial with a left-truncated negative binomial (Y |(X=n)~left-truncated
negative hypergeometric). In all the above mentioned results it is ap-
parent that the unique form of the bivariate distribution of (X, Y)
can also be derived once the distribution of X is established.

The results of Shanbhag [7] and Panaretos [3] constitute a sub-
stantial generalization of Patil and Seshadri’s characterization in the
discrete case. However, characterizations of distributions with finite
range cannot be obtained directly from them. Consider for example
the case where

s(rln)z(?)(Z:?>/<1X> r<m, m<N, m,n, N>0.

Clearly, s(r|n) can be expressed in the form a,b,_,/c, with a,,=<ZZ'>,
b.,= (N ;m) However, the results of Shanbhag [7] and Panaretos [3]
cannot be applied since a,=0 for n>m.

This implies that in such cases the R-R condition, as it stands, is
not adequate to replace the assumption of independence considered by
Patil and Seshadri. A more stringent condition is therefore required.
A general result providing an answer to this problem is stated and
proved in the next section (Section 2). Then, in Section 3 some inter-
esting examples are given.



JOINT DISTRIBUTION 193

2. The main result

THEOREM 2.1. Let N and m be positive integers such that N>m,
and let k, be the imtegral part of (N—1)/m (i.e. ky=[(N—1)/m]). Let
{(a,, b,); n=0,1,---} be a sequence of mon-negative real vectors such that
,>0, n=0,1,---,m; b,>0, 7=0,1, m+1,2m+1,---,(k—1)m+1, for
some integer k, 0<k=<k,. For n=0,1,---, N, put c,,=é ab,_,. Con-

r=0

sider a random vector (X,Y) of nom-negative, integer-valued components
such that P(X=n)=P,, n=0,1,---, N with P,<1. Suppose that

(2-1) P(Y:’rlen): arbn—r

n

whenever P,>0, r=0,1,---,n; n=0,1,-.--, N.
If 0<kZk, then the k relations

(2.2) P(Y=r|X=Y)=P(Y=r|X=Y+(G-1)m+1),
j:]-: 2’ tt k
hold iff
(2.3) P,=P %6,  for some 6>0, n=0,1,---, km+1.
Cy

Proor. “If” part. From (2.1) and (2.3) we have, for 0<j<N

P(Y=r|X=Y+j)=20=rX=r+j) _(@bje.. )P,

P(X-Y=j) P(X-Y=y)
— bjar _ ﬁﬁrﬂ ,,.:0’ 1’ cen
P(X-Y=3) ¢
Hence
. gr
(2.4) P(Y=r|X=Y+j)=—2 r=0,1,--
#(5, 0)

But I P(Y=r|X=Y+j)=1. So,

(2.5) #J, 0)=5 a,0=A(0)

and therefore

2. —r| X=Y+5)="20"  »=0,1,--; 0<j<N.

(2.6) P(Y=r| +7) A0) r =Jj=

The fact that the right-hand side of (2.6) does not depend on j implies
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that P(Y=r|X—Y=j) are independent of j for 0<j<N and hence
these are all equal for a given r. So, (2.2) is established.

The ‘only if’, part can be proved by an inductive argument. For
k=1 we are given that

P(Y=r|X=Y+1)=P(Y=r|X=Y).

By making use of (2.1) we obtain

Pouabicn _ Poable. g1 N-1
P(X=Y+1) P(X=Y) ’ r y 4y ’
and since a,>0, r=0,1, ---, m
(27) __Plﬂ_z P" 00,1 y r:O,l,...’m
Crit Cr
where
(2.8) 00,1=%3 E%E_—_I—f;—)l)— is a constant .
. —
Consequently
(2.9) Py _ Prgen 1, m.
Cri1 Co

Hence the result is true for k=1.
Assume now that the result is valid for k=<, 1<i<k, i.e. assume
that the conditions
PY=r|X=Y)=P(Y=r|X=Y+1)

=P{Y=r|X=Y+m+1)=--.
=P(Y=r|X=Y+(@—-1)m+1)

imply that

(2.10) Lrrcooms = B grycovmit po0, 1,00, m

CriGi-Dm+1 Co
We will show that the result is also valid for k=i+1. From
P(Y=r|X=Y+im+1)=P(Y=r|X=Y+(@—-1)m+1)
we have

Pr+’£m+l — Pr+(i-1)m+l 0(i—l)m+1,im+l ,’.20, 1, e, m

Criim+t CriGi—Dm+1

bi-pmr1  P(X=Y+im+1)
bimsi PX=Y+(E-1)m+1)

taking into consideration (2.10),

, a constant. Hence,

with O tm+1,imi1=
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P,., P, _
(211) .__'li_.""'_"'l_.:_oﬁg"‘l'(i 1)"‘“0“_1)"”.1’“”“ r=0,1,.-.- ,m.
Criim+1 Co

Relations (2.10) and (2.11) yield

—pAm
0(i—l)m+l,im+1 - 00,1 .

Hence, finally

(2'12) Pr+im+1 229_0(‘;"-:im+1 , ,'.20’ 1, e, m.

Crtim+1 Co
So, the statement is also true for k=4+1. This completes the induec-
tion argument. Consequently, we have that (2.2) implies (2.3), and
the theorem is established.

Note 2.1. Evidently, once the form of the distribution of X is
unique the same is true for the joint distribution of (X, Y).

Note 2.2. The theorem just proved is a variant of Shanbhag’s [7]
theorem and a generalization of the discrete case of Patil and Seshadri’s
[6] result. (Patil and Seshadri are making use of the fact that Y and
X—Y are independent. This, for finite distributions is equivalent to
the N+1 relations P(Y=7)=P(Y=r|X=Y+!) for all [=0,1,..:, N—r;
r=0,1,---, N. By (2.1) only k<N relations are needed. Moreover,
these k relations do not involve the unconditional distribution of Y.)
It also provides an answer to the problem of characterizing discrete
distributions with finite support as stated in the previous section. In
fact, Theorem 2.1 tells us more. It indicates that if one raises the
number k by 1 in (2.2) then one can determine another m probabilities
from the probability distribution P, (n=0,1,---, N). This is evident
in the course of the proof of the theorem. To characterize completely
a distribution with finite range one should appeal to the extreme case
of the theorem where k=Fk,. (In this case it is clear that all the N
frequencies of P, are characterized in terms of the k, conditions (2.2).)
This implies that to characterize a finite distribution, the number of
R-R type conditions required depends on the parameters (N, m).

Note 2.3. It is interesting to observe that if the distribution of
Y given X is of the form (2.1) and the distribution of X satisfies (2.3)
for n=0,1,..-, N then Y and X—Y are independent.

3. Some Applications

Let us consider a random vector (X,Y) of non-negative integer
valued components such that P(X=n)=P,, n=0,1,---, N with P<1.



196 JOHN PANARETOS

Then, as a direct consequence of Theorem 2.1 the following corollaries
can be established.

COROLLARY 3.1 (Characterization of the Bimomial Distribution).
Suppose that

3.1) P(Y:r[X:n)=(’;‘) (1:,{:;”) / ({X ) ,
r=<n, m<N, m,n, N>0
1.e. s(r|n)~hypergeometric (m,n, N). Then
P(Y=r|X=Y)=P(Y=r|X=Y4+({G—-1)m+1), 1=1,2,---, k

with
(3.2) Icoz[ Nq;;l ]
iuf

3.3) P,,=<lx>p"q”’"; 0<p<l, g=1—p, N>0, n=0,1,-.., N.

PRrROOF. Define

m _[N—m _
™. a=(Nom) w0,

a,=
Then cnziarbn—f‘: ]7\1{)! n=07 1,"', N-
r=0

These sequences can be used to express (3.1) in the form a,b,_./c,
and also satisfy the requirements of Theorem 2.1. Consequently, ap-
plying the result of the theorem we find that (3.2) holds iff P, is bi-
nomial as in (3.3). (A reference to the problem solved by this corollary
is made in the paper by Shanbhag and Taillie [9]).

Note 3.1. Patil and Ratnaparkhi [4] have observed that if the
conditional distribution of Y given X is hypergeometric (m,n, N) as in
(8.1) and X~Dbinomial (n; N, p) then the R-R condition holds. It can
now be seen that their remark is a side result of the ‘if’ part of
Corollary 3.1. In the same paper the authors raised the question as
to whether the R-R condition implies that X~binomial (»; N, p) when
s(r|n)~hypergeometric (m, n, N). Shanbhag and Panaretos [8] by means
of a counter example showed that this is not necessarily the case. By
means of Corollary 3.1 we are now in a position to point out that in
general [(N—1)/m] conditions of the R-R type are required for X to
be binomial (n; N, p). There is however, a special case in which only
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one condition of the R-R type is adequate to characterize the binomial
distribution (with Y|(X=mn)~hypergeometric (m,n, N)). This case
arises when m takes certain values in relation to N. Formally this
case can be stated as follows.

COROLLARY 3.2 (Characterization of the Binomial distribution using
a Rao-Rubin type condition). Suppose that

P(Y=r|X=n)=(T)<JXj">/(JX), r<m; N'z“l <m<N; n, N>0.

1.€. s(r]n)~hypergebmetric (m, n, N) (N-1)/2<m<N). Then
PY=r|X=Y)=P(Y=r|X=Y+1)
iff X~binomial (n; N, p) as in (3.3).

PROOF. From the previous corollary we have that X~Dbinomial
(n; N, p) iff (3.2) holds. But because of the additional restriction im-
posed on m, we see that we should have k,<2. Since k, is a positive
integer, the result follows.

Remark. It is evident from our previous comments that as m
increases the number k, of the R-R type conditions required to char-
acterize the binomial distribution decreases. This number takes its
minimum value (k,=1) when m exceeds (N—1)/2.
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