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Summary

This is an expository summary of the authors’ report on classifica-
tion of the generalized hypergeometric (GHg for short) family of dis-
tributions (Sibuya and Shimizu (1981), Keio Science and Technology Re-
port, to appear). Emphasis is laid on the definition of the distributions
based on some conventional rules, and on the complete classification of
the multivariate GHg distributions, whose types are found to be rather
limited in spite of their quite general definition. Previous classifications
and namings are summarized and compared with the new one.

1. Generalization of the Hg distributions

We start with the analysis of simple univariate hypergeometric (Hg
for short) distributions. The ordinary Hg distributions are defined by

an = ()G =C G )

where N, M and n are positive integers and z is an integer such that
max (0, n+M—N)<x<min (n, M). It is called hypergeometric because
p(x) is written as

_(N=M)(N—n)! (=M)(—n).
(1.2) PO =N —n)N! (N—M—nt1l)al’

where (a), is the ascending factorial product
(a).r:a(a'_l'l)' : '(a+x"‘“1) ’

and the factor depending on z is a term of the Hg series
Fla, 8;7; z)=i (@)=(8): 2,

z=0 (T)xx!
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with z=1. For real parameters F(a, 8;r;1) is absolutely convergent
if and only if y—a—p3>0 and in this case we have

=L r—a—B)I(r)

(-2 P b D= a8
If @ or B is equal to —m, a negative integer (when both a and j are
negative integers as in (1.2), —m is the larger one), then the series is
finite and defined unless 7 is a negative integer smaller than —m, and
(1.8) is valid for this case also provided that a rule (1.9) in later dis-
cussion is applied where necessary.

The parameter values in expression (1.1) are easily extended since
the binomial coefficient is usually defined, for any real a and any in-
teger x, by

(a>=a"’ —o@=1)---@=2+1) ir 50,  and =0, if 2<0.
x x! x! -

So that
(1.4) p(x)=<g>< b >/<“+b>, 2=0,1, -, m,

n—x n

is a formal generalization of Hg distributions. If a,b>mn—1, then this
is the positive Hg distribution, which includes the ordinary Hg as a
special case, and

R A
=<a+x—1 )(b+n—x—1>/<a+b+n_1 >

&x n—ao n
a7b>0; x=07 11 e, M,

is the negative Hg distribution. On the other hand, expressions (1.2)
and (1.3) suggest another generalization of Hg based on the form

_ T—a)l(r—p) (a)(8)
(1.6) )= r—a—pT () !

making the parameters integer and real, and positive and negative.
If (1.6) is formally put in the form of (1.4) following the correspondence
between (1.1) and (1.2), then

(L.7) say=( ) ("))

where a=—a, f=—n and y=b—n+1 of (1.4).
Now we observe the difference between the two forms (1.4) and
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(1.6). The case of (1.6) where all the parameters are positive and
ry—a—p>0, and £=0,1, 2, ---, provides a natural definition of distribu-
tions, but in the form of (1.4) or (1.7) this case requires an extension
of the binomial coefficient allowing a negative lower argument. So
(1.6) looks general enough comparing (1.7) without such an extension.
. Moreover the symmetry of (1.6) with respect to @ and g8 is not well
reflected in (1.7). In the negative Hg (1.5), however, if —b is a nega-
tive integer, then its form in (1.6) has gamma functions with negative
integer argument, I'(y—g) and I'(y). The same trouble occurs if we
try to extend the binomial coefficient using the expression

a\_afa—1)---(a—x+1) _ I'(a)
(1.8) <m>_ ! T Te—2)1+z)’

and allowing x to be negative. The trouble is solved at least for the
negative Hg case if we define, for nonnegative integers m and =,

I'(=m) _ mF( m-e) _ (=1 Ln+]) I'(n4+1)

(1.9) I'(—n) a—-o I'(—n+e) I'(m+1)

The first expression is equal to the last one if m and n are nonintegers
and m—n is an integer.

Further, in the negative Hg (1.5), if b=1 or f=y=—mn in (1.6),
then the probability function becomes, with the help of (1.9),

I'(=n—a)I'(0) (@)(=n), _ I'(a+1)m! (a),
I'(—a)l’'(—n) (—n)x! I'(e+n+1) ox!

p(x)=

and the factor depending on z in the last expression is independent of
n, which means that the range of the distribution is not determined
naturally unless the factor (—n),/(—n), is kept uncanceled. This fact
will be reconsidered in Definition 1. Returning to the ordinary Hg,
we find another gap between its two forms (1.1) and (1.2). The or-
dinary Hg is naturally determined by (1.1) when n+M —N>0 and the
range of distribution is [n+M —N, min (n, M)]. But the factor (N —
M—mn+1), in the denominator of (1.2) vanishes in the range. Form
(1.6) defines distributions on the intervals [0, #] or [0, o), and the
possible parameter values are easily specified as we shall see later.
To make (1.6) cover the distributions on the other intervals as above,
we have to extend (a), allowing = to be a negative integer by apply-
ing (1.9) to the relation

(@).=T"(a+2)/I'(a).

Based on the above observations, we define the univariate GHg
family of distributions covering typical ones which are naturally de-
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fined by (1.4) or (1.6).

DEFINITION 1. A univariate GHg distribution, denoted by F (a, 8; 7),
is the one satisfying the following three conditions (i )-(iii).
(i) It has the probabilities of the form

_ IG-a)l(r—f) I(a+s)[(5+s)
W10 PO = T AT @I () Tt (ta)

or

I'r—a)'(y—BI'(1—a)I'(1—p)

(L.11)  p(x)= I'y—a—B)A+a)[(r+x)[(1—a—a)[(1—f—x)

If there is a pair of gamma functions with negative integer argument
one in the numerator and the other in the denominator, then we let
the arguments positive applying the rule of (1.9). If the numbers of
gamma functions with negative integer argument in the numerator
and the denominator are unbalanced, then the probability is undefined.
(ii) The probabilities p(x)’s are defined and positive on a finite or in-
finite integer interval [y, v] and their sum over it is one. p(x) is zero
or undefined on x=p—1 or v+1 if they are finite.

(iii) If there are two parameters with the same integer value v, or
there is a parameter with the value v=1, then the distribution might
be defined for both < —y and x<—v+1. We regard it, however, as
a distribution on either side and not on both sides.

Condition (ii) excludes the range [y, »] containing [—1, 0], that is,
integers of the interval must be all nonnegative or all negative. In
fact, if the factor 1/I'(1+x) in (1.10) or (1.11) is defined for z<-—1
applying (1.9) in pair with a gamma function with negative integer
argument in the numerator, then the p(x) remains undefined for x=0.
If there is no such gamma function in the numerator, then 1/I'(1+%)
is defined for x=0 but not for < —1. Similar argument shows that
one of the parameters must be —y unless v=o0, and that another
parameter must be —u+1 unless p=—o0 or pg=0. Condition (iii) over-
rides Condition (ii) to include F (¢, —m; —m) on [0, ] in our family.

THEOREM 1. All the univariate GHg distributions of Definition 1
are classified as in Table 1, and only the types of distributions of Table
1 are possible.

Basically, there are five types of GHg: Al, A2, Bl, B2 and B3.
Type A’s have finite range [0, n], Al is the positive Hg and A2 the
negative Hg, which is also called Markov-Pélya, ete. Type B’s have
infinite range [0, o). Bl is unimodal and its variance is smaller than
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Table 1. Classification of the univariate GHg family of distributions,
Definition 1.
Range Type Distribution Restriction Name (Kemp and Kemp type)

[0, »] Al F(=§ —m Q) E>n—1 Positive Hg (I A)

A2 F (¢ —n;, =0 t>n—1 Negative Hg, Markov-Pélya,
Pélya-Eggenberger, bino-
mial beta (I A, III A)

[0, o0) Bl F(—n+e —n+6;0) - — (IB)

B2 F(s, —n+d; —n+p) p>e+0 — (II B, III B)

B3 F¢E 70 {>E+y Inverse Markov-Pélya, In-
verse Pélya-Eggenberger,
generalized Waring, nega-
tive binomial beta (IV)

Relation with the above types

[m, n] Al F(—¢, —n; —m+1) E>n—1 Right m shift of Al:

F(—¢+m, —n+m; 14+m)
on [0, n—m]

or inversion (Y =n—X) of

F(;n, —n+m; E—n+1)on

[O’ n_m]
[m, ) Blt F(—m—n+d, —m—n+te; —m+1) Right m shift of Bl:

F(—n+d, —n+e;14+m) on
[0, =)

B3t F(¢—m,n—m; —m+1) m+1>&+yn Right m shift of B3:

F (&, 7; 14+m) on [0, )

[-n, —m] A2-*F (&, m;nt+l) E>n Left » shift of A2:

F(é—n, —n+m; —n+1)on
[0, n—m]
or inversion (Y =—X—m) of
A2:
F(m, —n+m; —&+m+1)
on [0, n—m]
(—oo, —m] B3 *F(—=¢{+m+1,m;m+1-§) (>E+m Inversion (Y =—X—m) of
B3:
F (& m; ) on [0, )

B3~ F(1,1;m) m=3,5, ... Inversion (Y=—X-—m) of
B3:

F(1,1;m) on [0, )

[m, o) C F(e, —m+1; —k+e); k=1,2,3,---; m=k+3, k+5,--- for (1.10), m=
k+2, k+4, .-+ for (1.11), e=e(k, m), 0<e<1, is uniquely determined
as follows.

k
N 1 2 3 4 5
2 .56155 .43484 .37228 .33406 .30784
3 .5 .33333 .25 .2 .16667
4 .46293 .27164 .17843 .12568 .09297
5 .43775 .23027 .13328 .08257 .05400
m, n, k: Positive integers * The form of (1.11) only.
& 1, : Positive real numbers

9,6 p

Real numbers on (0, 1)
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or equal to its mean if they exist, B2 is unimodal or bimodal and its
mean is infinite, and B3 is the type called inverse Markov-Pélya, etc.
The distributions on the other intervals, A1*, B1*, B3*, A2~ and B3-,
are shift or inversion of the basic five types. A random variable of
these types is expressed as X+m or —X +m using a random variable
X of the basic types. Type C is a very special one.

The classification into the basic five types is essentially due to
Kemp and Kemp [4] who disregarded, however, other possibilities. Our
classification is simpler and complete, but there are some unpleasant
facts in Table 1: (i) There are Type C distributions on [m, o) de-
fined only for isolated special values of parameters. (ii) For some
parameter values, forms (1.10) and (1.11) differ by a factor —1, and
(1.10) cannot be probabilities while (1.11) defines a distribution. (iii)
F(e,m;p), 0<e<p<l and F(1,1;m), m=3,5,7, ... are distributions
on both [0, ) and (—oo, —m]. Our definition is a compromise to
cover the distributions of two closely related but different forms, is
based on conventional rules, and cannot be free from such defects.

2. Multivariate GHg distributions

The multivariate ordinary Hg distributions are defined by
_ o o= | T (M N->M, N
@1 px)=plm, -, 2) [le< x, )K n—3x, >/< n>
_N=—m(N-> M)! (=7)z s, 1 (=M,)s,
NI(N—-n—3M)! (N—n—3M)saz, i=t x;! '

where M,’s, n» and N are positive integers and z,’s are integers such
that 0<z;,<M, and max (0, n+3> M,—N)<3>)z,<n. Therefore, multi-
variate version of (1.4) and (1.6) are

(s, (257

1\, n—2%; " ’

I

J

@2 po=|

and

_Teo—N)(0o—>a )(Z)ij £ ("‘i)zf
@8 = S e @ @ee Iz

respectively. Discussions on these forms are quite parallel to those in
the univariate case, and our definition of multivariate GHg is similar
to that of univariate GHg.

DEFINITION 2. A g¢-variate GHg distribution, denoted by F (a; 4; w),
a=(ay, - -+, a,), is the one satisfying the following three conditions (i)-

(iii).
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(i) It has probabilities of the forms

@2.4) pu=Ll@=Ae=3a)G+32) {4 _TI'le+e)
TNo—21—X a)I (D M(o+3 ;) i=t T'(e)(1+z;))

or
_ To—)w—3 a)(1—12)
(28 M= e S e Tt s z) [(1—A—S )
] Ir(l—a,)

i=t T(1—e;—2,)[(1+2,)

The gamma functions with negative integer argument are treated in
the same way as in Definition 1.

(ii) The probabilities p(x)’s are defined and positive on a connected
discrete region of an orthant, and undefined or zero on its neighbor-
ing outside points, and their sum over it is one.

(ili) The distribution range of (ii) is not degenerate into a lower di-
mensional space. This implies that the range consists of at least two
adjacent values of > z,=v and v+1, say, and of at least ¢ adjacent
(9—1)-dimensional points on 3} x;=v or v+1.

Condition (ii) means that the range of a distribution cannot cover
the points with z,=0 and x,=—1 because of the factor 1/I'(1+x)),
therefore the range must be within an orthant (the axes are regarded
as positive side points). The boundaries of the range are, by similar
observation, 0=x;, «,<m; (m;>0) or x,<—m; (m;>0), j=1,2, ---,q;
or 0<n<3z,, x,<m (m>0) or X x,<—m (m>0), if there are
corresponding integer valued parameters.

The sum of the components is a univariate GHg F (3] e, 1; ) and
the distribution of any component X, given their sum equal to s, is
also a univariate GHg F (a;, —s; > a;—a;+s—1). Thus from earlier
considerations as given in Table 1, the possible parameter values and
possible distribution ranges of multivariate GHg are quite limited.

THEOREM 2. All the multivariate GHg distributions of Definition 2
are classified as in Table 2, and only the types of distributions of Table 2
are possible.

There are four kinds of distribution ranges; finite or infinite ones
in the nonnegative or the negative orthant. The distributions in the
negative orthant are inverses of those in the nonpositive orthant.
Figure 1 shows distribution ranges of the types in Table 2.

Types #1-#4 are generalization of the univariate positive Hg (Types
Al or Al"), but a little more complicated. A multivariate ordinary
Hg (2.1) belongs to the intersection of #1 and #2 if n+3>) M;<N, and
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#l(MHg), 2,
#5(MNHg) #2, #6(MIHg) #1A#2(MHg)
o
° o000 o0 ° ° o
0o O O P O o 0 o 0O 0 00 O
#3(MHg) #4 43 # 4(MHg)

#7, #8(MNIHg) #9, #10

Figure 1. Distribution ranges of the Types of distributions of
Table 2 (bivariate GHg).

to the intersection of #3 and #4 otherwise. More generally, a distribu-

tion of (2.2) with a;>n—1 (j=1, ---, q) belongs to 1 if b>n—1, and

to #3 if b=n—m and m is a positive integer. Let S:é X, be a posi-
L i=1

tive Hg variable having probabilities (1.4) or F (—a, —n; b—n+1) with
a,b>n—1 (Al or Al*). If the conditional probabilities of X=(Xj, :--,

X,) given S=s is
GOIG) e=Fe

that is X; has F(—a,, —s;a—a;—s+1), then X has (2.2) or F (—a, —n;
b—n+1), a=(a; -+, a,), of Type #1 or #3. While if the conditional
probabilities of X given S=s is
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GG m=gm

where n,’s are positive integers, then X has the probabilities

=1

(2.6) [ﬁ <Zj )] aOb9 (@ +b)

or F(—n; —a;b—n+1), n=(n,, -+, n,), which is of Type 42 or #4, and
cannot be written in the form of (2.2). Another difference between
£1 and #2, or #3 and #4, is the shape of distribution ranges: Typical-
ly, the range for Type #1 is a simplex (a triangle), and for Type #2
an interval (a quadruple). Some corners may be cut off for some param-
eter values, and for Types #3 and #4, a simplex including the origin
(0, --+,0) is always cut off. Moreover, Types 1 and 2, or Types 3 and 4,
are not exclusive of each other as we have seen in studying multivariate
ordinary Hg. Still, this is a characteristic difference between them.
Types #2 and #4 are not studied much in literature.

Type #5 is a generalization of the negative Hg distributions, Type
A2. It can be written as

e we=[1( )| g, IOET)

and defined on a simplex 0> x,<nm. Type #6 is also a generalization
of Type A2 to another direction. It can be written as

g (o ol 120 0 [ G08

and defined on an interval 0=<x,<k;. The differences between Types
#5 and #6 are their distribution ranges and the conditional distributions
of a component X; when the sum >} X;=s is given, which correspond
to Types A2 and Al respectively. See also discussions in Section 3.

Types #8 and #9 are natural generalizations of Types B3 and B3+
respectively. Type #7 has no good model and Type #10 is very special.

In the negative orthant, a distribution with finite (infinite) range
is obtained by the inversion Y,=m,—X;, where (X,, -+, X,) is a Type
#5 (Type #8) variable. If the dimension ¢ is odd, then Types #11 and
#12 are valid for the form (2.5) only.
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3. Comments on classification and naming

In the univariate GHg family, Types Al, A2 and B3 are typical,
and in the multivariate GHg family, #1, #3, #5, #6 and #8 are typical.
There are many chance mechanisms generating these as discussed by
Janardan [1], Janardan and Schaeffer [3], and the authors [5]. Some
well known ones are summarized in diagrams of Figures 2 and 8 for
better view of the GHg and for later discussion on naming.

Figure 2 shows how Types Al, A2 and B3 distributions are related
to the binomial or the negative binomial distributions. (A): In draw-
ing balls out of an urn with white and red balls, we delete further
¢—1 balls of the same color as sampled, or just replace each sampled
ball, or return the sampled ball adding further ¢—1 balls of the same
color. We draw out balls a fixed number of times and count the
number of red ball samplings. (B): For the urn of (A), we continue
the procedure until a fixed number of white balls are observed, and the
variable is the number of red ball samplings. (C): X and Y are binomial
(or negative binomial) variables of the same probability parameter
and consider the distribution of X under the condition that X+ Y =s
is given. (D): Assume the probability parameter of a binomial (or a
negative binomial) distribution to be a beta variable, and consider the

(A) Polya’s Urn Model
/ Alor Al* (Positive Hg)
(Deletion)

A2 (Negative Hg, Markov-Pélya)
(Addition)

Binomial
(with Replacement)

(B) Polya’s Urn Model (Inverse Sampling)

A2 (Negative Hg, Markov-Polya)
/ (Deletion)

B3 (Inverse Markov-Pélya)

Negative Binomial
(with Replacement)

(Addition)
(C,D)
_w Al
Binomial ’C\;\M\
A2

f"

Negative Binomial -1:;\‘
B3

----- > X|X+Y=s Conditional Distribution
~~~~ Beta Compound

Figure 2. Generation schemata of Al, A2 and B3.



188 MASAAKI SIBUYA AND RYOICHI SHIMIZU

(A) Polya’s Urn Model (MP)
#1 or #3(MHg)
Multinomial (Deletion)
(with Replacement) \#5 (MNHg)
(Addition)
(B) Polya’s Urn Model (Inverse Sampling) (MIP)

#6 (MIHg)
Negative Multinomial (Deletion)
ith Repl
(wi eplacement) \ #8 (MNIHg)
(Addition)
(C,D)
- # 1/\#2
Multinomial ’\1:"'\—\.‘
#5
Y
Negative Multinomial 3~
‘\-\-\,\N #8

----= X|X+Y=s Conditional Distribution

—~~~~»> Dirichlet Compound

(E,F)
4 #1A%2

(Multiple) Binomial :::M#G

(Multiple) Jland #5
Negative Binomial —~— ™ a #8

== (X1,, Xo) | Xo+ X1+ +X,=s Conditional Distribution
«~~~~ Beta Compound of (X, , X;)

Figure 3. Generation schemata of #1, #3, #5, #6 and 8.

compound distribution. Remark parallelism between (A, B) and (C, D).

Extending Figure 2 to the multivariate case, we get Figure 3
which is a little more complicated. In (A) and (B), the urn has now
white and other multiple color balls, and observe the number of balls
of each color. In (C) and (D), binomial or negative binomial and beta
distributions are extended to multinomial or negative multinomial and
Dirichlet distributions. In all of these cases, the difference between
Types #5 and #6 should be noticed, and except for this the schemata
are parallel to those of Figure 1. (C) and (D) of Figure 2, however,
can be generalized to another direction, that is, (E) and (F) of Figure
3, where a number of independent binomial or negative binomial dis-
tributions of the same probability parameter are considered. In (E),
we consider the simultaneous distribution of components (X, - -, X))
of independent variables (X, X, -+, X,) under the condition that X,+
X,+---+X,=s is given. In (F), we consider the compound simultane-
ous distribution of (X, ---, X) when the probability parameter is a
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beta variable. Comparing (E) and (F) with (C) and (D), we notice that
the roles of #5 and #6 are exchanged.

Because of the various models and forms, the GHg distributions
have many names as written in Tables and Figures. Moreover, since
Polya’s urn model is initially studied by A. A. Markov and by F. Eg-
genberger and G. Pélya, Type A2 distributions are sometimes called
after one or two of these names, and Type B3 distributions have these
names preceded by ‘inverse.” See discussions in Janardan and Schaef-
fer [3].

In Table 2 and Figures 1 and 3, names in Janardan and Patil [2]
and Janardan [1] are written. Their Multivariate Pélya (Inverse Multi-
variate Poélya) distributions with negative or positive contagion corre-
spond to Types #1\V#3 or #5 (#6 or #8) respectively, and if a parameter
value in these is limited to integer, then they are named MHg or
MNHg (MIHg or MNIHg) respectively. So they propose two ways of
classification and naming corresponding to each other. The latter
naming is not consistent with univariate case, since the popular uni-
variate names are inconsistent. The negative binomial distributions
have a negative parameter value and correspond to inverse sampling.
The negative Hg distributions have negative parameters in a form (2.2),
correspond to both positive contagion and inverse sampling as shown
in Figure 2. Thus, neither the term ‘inverse’ nor ‘negative’ has
a definite meaning. _

We do not propose here another naming system, but we believe
that the whole picture of GHg and the relationship among names are
now made clear.
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