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Abstract

A method to compare two-associate-class PBIB designs is discussed.
As an application, it is shown that if d* is a group-divisible design
with 2,=2,+1, a group-divisible design with group size two and A,=21,
4+1>1, a design based on a triangular scheme and i,=1,+1, a design
based on a triangular scheme, v=10, and 2,=21,+1, a design with an
L, scheme and 2,=4+1, a design with an L, scheme, v=(s+1)?, and 2,
=1,+1, where s is a positive integer, or a design with a cyclic scheme,
v=>5, and 2,=2,%1, then d* is optimum with respect to a very general
clags of criteria over all the two-associate-class PBIB designs with the
same values of », b and k as d*. The best two-associate-class PBIB
design, however, is not necessarily optimal over all designs.

1. Introduction

To control the variations in experiments for comparing several
treatments, one often uses block designs. Suppose » treatments are
to be compared via b blocks of size & with k<wv. Any arrangement
of the v treatments into the bk experimental units is called a design.
For convenience, let 2,,. denote the collection of all such designs.
The usual additive model specifies the expectation of an observation on
treatment 7 in block j to be ;48 (treatment effect+block effect),
where o, and B8; are unknown constants, 1<i<v, 1<j5<b. Further-
more, the bk observations are assumed to be uncorrelated with com-
mon variance.

For each d € 2,,,, various optimality criteria are defined in terms
of the coefficient matrix of the reduced normal equation for estimating
the treatment effects (also called C-matrix):
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(1.1) Co=diag (ra, +++, 740)—k'N,N/ ,

where 7, is the number of replications of treatment %, and N, is the
treatment-block incidence matrix. Let pu=pren=---2pg,1=p=0 be
the eigenvalues of C,. This paper is mainly concerned with optimality
criteria @, defined by

(1.2) 0,C)=3 f(uu)

where f is a real-valued function defined on [0, max tr C,] such that
dedy b,k

(i) f is continuous, strictly convex, and strictly decreasing on
[0, max tr C,] (the possibility that lim f(x)=f(0)=c is allowed);
x—0t

de!],,,b’k

(ii) f is continuously differentiable on (O,dnglax trC,) and f' is
€%,0,k

strictly concave on (0, max tr C,).
degv,b,k

Such a criterion @, is called a type 1 criterion in Cheng [2]. A func-
tion @* of C, is called a type 1 criterion in the wide sense if it is of
the form Fo@, where F is nondecreasing and @, is a type 1 criterion.
If @ is the pointwise limit of a sequence of type 1 criteria in the wide
sense, then it is called a generalized type 1 criterion. A design which
minimizes @(C,) is called @-optimal. It can be shown that the common-
ly used A- and D-criteria are of type 1, and the E-criterion is a gene-
ralized type 1 ecriterion. Note that a D-, A-, or E-optimum design
minimizes ﬁp;i‘, 12:#;3’ or pg,_i, respectively. Our definition of gene-
ralized type 1 criteria is slightly different from that given in Cheng
[2]. Under the earlier definition, the generalized type 1 criteria did
not really cover the FE-criterion. We are grateful to the referee for
pointing out this deficiency.

Kiefer [7] proved that if a balanced incomplete block design (BIBD)
exists, then it is optimal over 2,,, with respect to a very general
class of criteria including all the generalized type 1 criteria mentioned
above. Bose and Nair [1] proposed the use of partially balanced in-
complete block designs (PBIBD) when a BIBD does not exist. Among
the PBIB designs, a group divisible (GD) design with two groups and
A;=2+1 has been shown by Cheng [2] to be optimal over £2,,, with
respect to any generalized type 1 criterion. When such designs also
fail to exist, the problem of finding an optimal design in £2,,, turns
out to be very difficult. However, since practically the PBIBD’s with
two associate classes are the most popular designs next to BIBD’s,
and quite often there are more than one such design in £2,,, it is
worthwhile investigating how to choose the best one when they are
not unique. As will be seen later, this kind of comparison is made
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possible by the fact that for a PBIBD with two associate classes, C;
has only two distinct nonzero eigenvalues. Note that tables of PBIBD’s
with two associate classes have been prepared by Clatworthy [4].

As usual, we write r=bk/v, the number of replications of each
treatment in a PBIBD. For a two-associate-class PBIB design d, de-
fine 2;; as the number of times a treatment appears together with any
ith associate of it, and write n, as the number of ¢th associates of
each treatment, 1=1,2. These notations are the same as the com-
monly used ones except that the letter d is inserted to emphasize that
they depend on the design being considered. Sometimes it is sup-
pressed if there is no ambiguity. For convenience, max {14, 4.} and
min {,, 4} are denoted as A,,; and 2, respectively.

In this paper, it is shown that if d*e€ 2,,, is one of the following
designs :

(i) a GD design with A,=2,+1 (not necessarily with two groups),

(ii) a GD design with group size two and 2,=2,+1>1,

(iii) a design with a triangular scheme and A,=2,+1,

(iv) a design with a triangular scheme, v=10, and 2,=2,+1,

(v) a design with an L, scheme and 2,=21,+1,

(vi) a design with an L, scheme, v=(s+1)%, and A,=2,+1, where

s is a positive integer,

(vii) a design with a cyclic scheme, v=5, and 2,=24,+1,
then d* is optimum over all the two-associate-class PBIB designs in
2., with respect to any generalized type 1 criterion.

We first discuss the E-criterion in Section 2. The results for the
E-criterion are then used to treat the general criteria in Section 3.

2. E-optimality

Recall that an FE-optimum design maximizes pg,;,.;. In studying
the performance of a PBIB design with two associate classes under
the E-criterion, it is more convenient to look at the following matrix

(2.1) H(Co)= {kCy— {r(k— 1)+ 2uri} Lo+ 2t o} [(Aapny — Aara) »

where I, is the vXwv identity matrix, and J, is the v X v matrix of ones.
This matrix ¢(C,) actually is the adjacency matrix of a strongly regular
graph with v vertices and degree my or n, depending on whether 1,
<245 Or A4>24. (See Raghavarao [11], p. 187.) For convenience, we
denote this graph by G(d).

It is easily seen that p,,_; is related to the smallest eigenvalue of
#(C), say ji, by

(2.2) a,v-1 =K {(Rary— Aap))fta+1(E— 1)+ 43} -



158 CHING-SHUI CHENG

So if d; and d, are two PBIB designs with two associate classes in
2,,. then d, is E-better than d, if and only if d, has a bigger value
of (Aai;— Aars)fta+ Aapy-  Since g, is always negative (actually p=—1), it
seems wise to make 24— as small as possible and also make f, as
big as possible. Note that the latter has to do with the structure of
the associated graph.

It is known that a design d € 2, ,, is E-optimal over 2,,, if d is

(i) a GD design with 2;,=244+1 (see Takeuchi [12]),

or

(ii) a GD design with group size 2 and A, =21,+1>1 (see Cheng

[3D)-

For design (i), the smallest eigenvalue of ¢(C,) is equal to —1
which achieves the biggest possible value, and 2,;— 445 =1, also achiev-
ing the minimum. It is known that the smallest eigenvalue of ¢(C,)
is equal to —1 if and only if d is GD with 2,,>2,. This can be proved
by the same argument as in Lemma 3 of Takeuchi [12]. However,
when 2,,— 44 is too big, the design turns out to be bad.

For design (ii), we still have A,;,—A44=1; however, the smallest
eigenvalue of ¢(C,) is now equal to —2, not —1. Unlike the case j,=
—1, the condition that p,=—2 does not characterize the structure of
the graph G(d). The following are some other examples with g,=—2:

(i) a design with a triangular scheme and 1,> 14,

(ii) a design with a triangular scheme, v=10, and A, > 1.,

(ili) a design with an L, scheme and ;> 14,

(iv) a design with an L, scheme, v=(s+1)%, and 1,>21;, where s

is a positive integer.

For example, let d be a design with a triangular scheme and i,
>24. By the definition of a triangular scheme, v=n(n—1)/2 for some
integer n=2. Since N,N, has eigenvalues 7k, r+(n—4)2,—(n—38)Ay,
and r—22,+ 2, (see Raghavarao [11], p. 128), it follows that the eigen-
values of ¢(C,;) are ny (=2(n—2)), —2, and n—4. Thus g;=—2. Cases
(ii), (iii) and (iv) can be similarly checked.

Unlike the group-divisible case, it is not known whether designs
(i)-(iv) are E-optimum over 2,,; when it is also true that 2,,;=2,y,
+1. However, the following can be proved :

ProposIiTION 2.1. Let d*€ £,,,. be a PBIBD with two associate
classes such that |2,—2;]=1, and the smallest eigenvalue of the adja-
cency matrix of the graph G(d) is equal to —2. If there is no GD
design with 2,=2,+1 in 2,,,, then d* is E-optimum among the PBIB
designs with two associate classes in 2, ,,.

ProOOF. Let d* be a design with the stated properties. For any
two-associate-class PBIB design d in £2,,: we have 2,,=<2,y, since
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Zd*[l] = 1dt[2] + 1. If ﬁd§ —'2, then

(Ragt;— Aap)fta+ Aarn = — 2(Rarty— Aarn) + Aarny
= —(Rarny— Aarzy) + Az
= — (A= Aavps) 1 Aaviey
=(Aaoty— Agrp)flar+ Aaoyy -

It follows that d* is at least as good as d under the E-criterion.

If g,=—1, then d is a group-divisible design with 21,>2,. By
assumption, 2,=24+2. To check (Aary;— Agm)ita+ Aan = (Raviy— Aasgay)flar +
Aoy, we need Ayu=1pm—2, i.e., 23=<Agmun—1. We now claim that this
is true. Otherwise, 1, must be equal to 2,3, which implies that
Nax(Age— Aa1) =MNgw OT Nge. However, this is impossible, since for a group-
divisible design, n,=>v/2, and hence 7,(2s— 24) =v>ngy and n,. Thus
we conclude that d* is at least as good as d under the E-criterion.

To complete the proof, we show that there is no de€ 2,,, which
is a PBIBD with two associate classes and —1>p,>—2.

For a two-associate-class PBIBD d, C, has two distinet nonzero
eigenvalues, say o; and B,. It is well-known that both ke,+%83, and
k'a,8, are integers. Therefore ko, and kB; are both integers or are
conjugate irrationals. If they are conjugate irrationals, then they
must have the same multiplicity as eigenvalues of kC,. In this case,
v is odd. Accordingly, by a result of Connor and Clatworthy [5]
(Theorem 8.11.1 of Raghavarao [11], p. 160), if g, is not an integer,
then d must have a pseudocyclic scheme. In the latter case v is of
the form 4¢+1, and n,=mn,=2t. Therefore the graph G(d) has degree
2t and its adjacency matrix ¢(C,) has eigenvalues 2t (with multiplicity
1), g, (with multiplicity 2¢) and the conjugate of g, say v, (with
multiplicity 2t).

Counting tr ¢(C,) and tr [¢(C,)]?, we have

(2.3) 2t -+ 2t 1, + 25, =0
and

(2.4) A8+ 24+ 2452 =2t(4t + 1) .
Solving (2.3) and (2.4), one gets

(2.5) fa= {—1— (4t +1)} 2.

If there exists a design d € 2,,,. which is a PBIBD with two as-
sociate classes and —2<pg,<—1, then g is not an integer. In this
case we need {—1—(4¢+1)*}/2>—2. This is true if and only if t=1,
i.e., v=5. However, a two-associate-class PBIBD with v=5 must be
of the pseudocyclic type (see Mesner [8]). This contradicts the exist-
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ence of d* which has g,.=—2 and is not of the pseudocyclic type.

If there exists a d*e ®,,, which is a design with a triangular
scheme and 1,=4;+1, a design with a triangular scheme, v=10, and
A=2;+1, a design with an L, scheme and 2,=4,+1, or a design with
an L, scheme, v=(s+1)% and 1,=1,4+1, then it can be shown that there
is no GD design with 2,=4,+1 in 2,,,. For example, assume that
there exists a PBIB design d*¢ £2,,, which has an L, scheme, v=¢,
and 1,=2,+1. Then n4u =2(s—1), nm=(s—1)’.. For a GD design with
A;=2;+1, one has m,+1|ny since m,+1 equals the group size. So if
there is a GD design with 2,=4+1 in £2,,, then we must have
2(s—1)+1](s—1)* or (s—1)*+1|2(s—1), both of which never hold.

Accordingly, if d*e€ ®2,,, is one of the above designs, then it is
E-optimum over the two-associate-class PBIB designs in 2, , ;.

From the proof of Proposition 2.1, v=>5 is the only case where
there is a non-group-divisible two-associate-class PBIBD with p,>—2.
As a matter of fact, a two-associate-class PBIBD with v=5, and 2,=
A;+1 or 2,=2,+1 has also been shown by Cheng [3] to be E-optimal
over the whole £;, ,.

3. The general criteria

We need some notations from Cheng [2]. Given any two positive
numbers A and B such that A*=B=A%(v—1), and any positive integer
n, 1<n<v—2, the solution of

nR4+(v—1—n)Ri=B

and
R, zR,
is given by
(3.1) Ri(n; A, By=(A+[n"'(v—1)(v—1—n)]"*P)/(v—1),
and
(3.2) Ryn; A, B)=(A—[(v—1—n)""n(v—1)]"*P)/(v—1),

where P=[B—A%(v—1)]"*; see Cheng [2].

As in Cheng [2], for any real-valued function f, we define F(n; A, B)
to be nf(Ry(n; A, B))+(v—1—n)f(Ry(n; A, B)). Finally, we denote tr C;
and trC? by A, and B, respectively. Then for a connected design d
whose C-matrix has two distinct nonzero eigenvalues, @,(C,)=F(n; A,,
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B,;), where n is the multiplicity of the biggest eigenvalue of C,.

LemMMA 3.1. Let d, and d, be two designs such that both C, and
Cs, have two distinct monzero eigenvalues, Adledz, d, is at least as good
as d, under the E-criterion, and B; <B,,. Then &(C,)=<®(C,) for any
generalized type 1 criterion @.

PROOF. Let py1=--=pyn=0>ptg n+1=""+=p,»-1=Pp; be the non-
zero eigenvalues of C,, and pg,=" "+ =plap, = > g, ny1="** = layo-1=P2
be the nonzero eigenvalues of C,. Then by assumption, ;= 8.

If m,=m,, then clearly (s ++-, fta,0o-1) is majorized by (gay, ---,
Ya,v-1)- As a matter of fact, py=p,, for all i=1,.-.,n, and p,,<
Ma,o-1, for all 4=my+1,...,v—1. This implies that for any type 1
criterion @,

0(C)=3 () S 3 F 1) =0ACs)

Note that the majorization of (¥, %. - -, ¥.) by (2, %5, - - -, &,) is equiva-
lent to i f(xi)gﬁ} f(y,) for each real continuous convex function f de-
i=1 i=1

fined on some real interval (see, e.g., Mirsky [9]). On the other hand,
if m;<n,, then by Lemma A3 (iii) of Cheng [2],

(3.3) P,(Co)=F(ns; A4y, Bo)ZF(ni; Agy By, -
Since B, =B, and A;,=A,, by Lemma A3 (i) of Cheng [2],
F(ny; Agy By)ZF(ny; Ay, By)=0,C) ,
which, combined with (3.8), implies that @,(C,)=®,(C,).

COROLLARY 3.1. Let d, and d, be two PBIB designs with two as-
sociate classes in 2,,.. If d, is at least as good as d, under the E-cri-
terion, and trC; <trC;, then d, is at least as good as d, under any
generalized type 1 criterion.

PROOF. Clearly A, =4, holds. By assumption, B, <B,,. Corollary
3.1 follows from Lemma 3.1 and the assumption that d, is at least as
good as d, under the FE-criterion.

Note that tr C} can be made small by reducing the difference be-
tween 1, and 2, since minimizing tr C; is equivalent to minimizing
Mol +(V—1—n4)A% and nglg+(w—1—ng)ls,; is a constant. When |2,
—2s|=1, the minimum value of tr C} is achieved. Therefore we con-
clude our main theorem :

THEOREM 3.1. Let d*€ 2,,, be a two-associate-class PBIB design
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such that |2,—2;|=1, and the smallest eigenvalue of the adjacency matrix
of the graph G(d) is =—2. If d* itself is a GD design with A,=2,+1
or there is mo GD design with 2,=2,+1 in 2,,., then d* is optimum
over the two-associate-class PBIB designs in 2,,, with respect to any
generalized type 1 criterion.

The theorem follows immediately from Proposition 2.1 and Corol-
lary 3.1. Thus the E-optimality result in Section 2 is extended to any
generalized type 1 criterion. For example, when v=16, k=4, b=36,
Clatworthy [4] listed seven two-associate-class PBIB designs: a GD de-
sign with 4 groups, 4,=5, 4,=1, a GD design with 4 groups, 1,=1, A,
=2, a design with an L, scheme and 1,=383, 1,=1, a design with an L,
scheme and 2,=0, 2,=3, a design with an L, scheme and 1,=3, 1,=0,
a design with an L; scheme and A,=1, 2,=3, and a design of pseudo
Latin square type with 2,=0 and A,=3. Among these, by Theorem
3.1, a GD design with 4 groups and 2,=1, 2,=2 is the best one.
Another example, when v=9, k=3, =30, an L, type design with i,=
2 and 4,=3 is the best one among the six designs listed in Clatworthy
[4] with respect to any generalized type 1 criterion.

Corollary 3.1 is particularly useful for comparing two PBIB designs
with two associate classes without doing much computation. A rule of
thumb is to make |2,—2,| as small as possible, and to choose a design
for which the smallest eigenvalue of the associated graph is as large
as possible.

When the association scheme is fixed, whether the design has A,>
Ay or 2,>12, is important. It was pointed out before that if d is a GD
design with 2,>21,, then the smallest eigenvalue of G(d) is —1. Also,
if d is a design with a triangular scheme or an L, scheme with 2,>1,,
then p, is —2. However, when the roles of A, and 2, are interchanged,
things change a lot. For a GD design with 2,>2,, z,=(—1)Xthe group
size. Thus p,=—2 if the group size is 2 and it decreases steadily as
the group size increases. For a design with a triangular scheme, v=
n(n—1)/2, and 2A,>2; f;=—(n—3), which is equal to —2 if n=>5, i.e.,
v=10. (When n=4, it is the same as a GD design with three groups.)
When v increases, 7, also decreases. For example, when v=21, k=2,
b=105, there are two designs with the same triangular scheme. One
has 2,=1, 2,=0, and the other has 2,=0, 2,=1 (designs T; and T, of
Clatworthy [4]). In this case, the latter is better. The same thing
happens for a design of L, type with 2,>1, too.

The results obtained in this paper also hold when the phrases
“triangular scheme” and “Latin square scheme” are replaced by
“pseudo triangular scheme ” and “ pseudo Latin square scheme,” since
only the parameters, not the structure, of the association scheme are
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relevant to the definition of our optimality criteria.

Although a GD design with two groups and 2,=4,+1 is optimum
over £2,,, with respect to any generalized type 1 criterion, the best
two-associate-class PBIBD need not be optimum over £,,,. The fol-
lowing are two examples:

(i) When v=9, k=3, b=18, the best two-associate-class PBIB de-
sign is one based on an L, scheme, 2,=1 and 2,=2. It is A- and D-
worse than design #8 listed in Mitchell and John [10]. The two designs
have the same performance under the FE-criterion.

(ii) When v=10, k=2, b=30, the best two-associate-class PBIB
design is one based on a triangular scheme, 4,=1 and 2,=0. This de-
sign is A- and D-worse than design #12 listed in Mitchell and John [10].
The two designs also have the same performance under the E-criterion.

Both designs #8 and #12 mentioned above are not PBIB designs.
So the story of designs based on triangular and Latin square schemes
seems to be quite discouraging. However, group-divisible designs with
2,=A,+1 are very promising to be optimum over all designs under
quite general criteria. This class of designs deserves more study.

Acknowledgment

The author wishes to thank the referee for pointing out an error
in the earlier draft of the paper.

UNIVERSITY OF CALIFORNIA, BERKELEY

REFERENCES

[1] Bose, R. C. and Nair, K. R. (1939). Partially balanced incomplete block design,
Sankhya, 4, 337-372.

[2] Cheng, C. S. (1978). Optimality of certain asymmetrical experimental designs, Ann.
Statist., 6, 1239-1261.

[3] Cheng, C. S. (1980). On the E-optimality of some block designs, J. R. Statist. Soc.,
B, 42, 199-204.

[4] Clatworthy, W. H. (1973). Tables of Two-Associate-Class Partially Balanced Designs,
Nat. Bur. Stand. (U.S.), Appl. Math. Ser. 63.

[5] Connor, W. S. and Clatworthy, W. H. (1954). Some theorems for partially balanced
designs, Ann. Math. Statist., 25, 100-112.

[6] Kiefer, J. (1958). On the nonrandomized optimality and randomized nonoptimality of
symmetrical designs, Ann. Math. Statist., 29, 675-699.

[7] Kiefer, J. (1975). Construction and optimality of generalized Youden designs, in A
Survey of Statistical Designs and Linear Models (ed. J. N. Srivastava), North-Holland,
Amsterdam, 333-353.

[8] Mesner, D. M. (1965). A note on the parameters of PBIB association schemes, Ann.
Math. Statist., 36, 331-336.

[9] Mirsky, L. (1963). Results and problems in the theory of doubly stochastic matrices,
Zeit. Wahrscheinlichkeitsth., 1, 319-334.



164 CHING-SHUI CHENG

[10] Mitchell, T. J. and John, J. A. (1976). Optimal incomplete block designs, ORNL/CSD-
8, Oak Ridge National Laboratory Report.

[11] Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experi-
ments, Wiley, New York.

[12] Takeuchi, K. (1961). On the optimality of certain type of PBIB designs, Rep. Statist.
Appl. Res. Un. Japan Sci. Engrs., 8, 140-145.



