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Abstract

Bounds on eigenvalues of the C-matrix for a partially balanced
block (PBB) design are given together with some bounds on the num-
ber of blocks. Furthermore, a certain equiblock-sized PBB design is
characterized. These results contain, as special cases, the known re-
sults for variance-balanced block designs and so on.

1. Introduction

A block design N=||n;| here is an arrangement of v treatments
in b blocks of the j-th block size k; (=1, 2, ---, b) such that the -th
treatment occurs 7; times (¢=1, 2, -+, v) and the 4-th treatment occurs
in the j-th block n,; times, where n;,=0 or 1 (binary case). In the ad-
justed intrablock normal equations for estimating the vector of treat-
ment effects under the usual assumptions, the following C-matrix plays
an important role :

C=D,—ND;'N'

where D, and D, stand for diagonal matrices with diagonal elements
Ty, Ty +++, Ty and ky, ky, - -+, k,, respectively, and A’ is the transpose of
the matrix A. Throughout this note, we shall deal only with connected
designs (i.e., the rank of C is v—1) in which all elementary contrasts
of treatment effects are estimable (cf. [2]).

Suppose (cf. [4]) that the association matrices A, 4,, ---, 4, are
defined in a usual sense. Furthermore, Af, i=0,1, --., p, rank (4% =
a;, are the mutually orthogonal idempotents of the association algebra.
Following Ishii and Ogawa [3], a block design is said to be partially
balanced with p associate classes if the C-matrix of the design has the
eigenvalues 0, p;, py, « -+, p, With multiplicities 1, @, @;, -+, @, and the
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linear space spanned by the eigenvectors corresponding to a root p; is
equal to the linear space spanned by the column vectors of 4% i1=1, 2,
«++,p (by a suitable change of order of p,). It is well known (cf. [4])
that a partially balanced block (PBB) design with parameters v, b, 7,
k; ¢o=1,2,---,v; j=1,2,---,b) based on an association scheme of p
associate classes is given by an incidence matrix N satisfying

(C=)D,—ND;'N'=p Al+p,Al+ - - - +p,A}

1.1)
(:a0A0+a1Al+ e +a’pAp) ’
where
Q= (ﬁ‘, 'ri—b>/v and ;<0, ¢=1,2,---,p.
Note that if p,=p;=---=p,, the PBB design essentially becomes a

variance-balanced block (BB) design in the sense of the definition of
Rao [10]. Further note (cf. [4], Theorem 13.2) that a PBB design with
a constant block size based on an association scheme is a partially
balanced incomplete block (PBIB) design based on the same association
scheme. PBB designs are useful as generalizations of PBIB designs
and BB designs.

In general, it is known (cf. [5]) that the eigenvalues of the C-
matrix for a block design are bounded above by the maximum of rep-
lication numbers 7,’s. From a point of view of an improvement of
this upper bound, Kageyama and Tsuji [8] have discussed in detail
some bounds on the eigenvalue of the C-matrix for a BB design.
Little attention has been given to discussions in the form of specify-
ing PBB designs. The main purpose of this note is to give other
upper and lower bounds on the largest eigenvalue and the smallest
eigenvalue of the C-matrix for a PBB design. Furthermore, other
observations relating to these bounds are obtained. These results con-
tain the well-known results for BB designs and so on, as special cases.
The idea of approaches here is the almost same as that of Kageyama
and Tsuji [8]. :

Finally, since a design uniquely determines its incidence matrix
and vice versa, both a design and its incidence matrix are denoted by
the same symbol throughout this note. For the convenience of nota-

tion, we further let max r,=max r,, min r,=min r,, max k,=max k; and
15isv 1sisv 1sj=sb
min k;=min k;,.
1750
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2. General derivations of bounds

Let pmax=max p;, and pn,=min p; for (1.1). Then p.;.<p;<pmax fOr
15i<p 1<isp
1=1,2,---,p. We here derive bounds on the extreme eigenvalues p,;,
and p.,, of the C-matrix of a PBB design.
We first present two lemmas which are useful to later discussions.
LEMMA 2.1.

For a PBB design with parameters v, b, r;, k; (1=1,
2y cre, Uy j=1’2v "',b),

é r,:—b
¥ _(max n)(l— 1 )< S < Y (min r,.)(1— 1 )
v—1 min k; v—1 v—1 max k;
From the definition of a PBB design N, we have

PROOF.

CIDT_NDI:lN,:a’OAO_‘_alAI"}" M +apAp ’

where a0=<§} ri~—b>/v and a;=<0 (¢=1,2,---,p). The 4-th diagonal
i=1

element of the above relation yields for n:é 74
=1

(M P n—>b
T <Icl et k, > v
Hence

R L

k, k,

>7’L—b N+ + Ny

o max k,

_ n—>b 7

v max k;,
which implies
Iri<1— 1 )zn_b ’ 7::1) 27 e, v,
max k; v

so

(minr,)(l— 1 >_Z_n—b
max k; v
which is equivalent to

n—b v . ( 1 )
< 1- .
v—1 " v—1 (min 7) max k;,
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On the other hand,

= k1+ +kb
<n=by n
v min k;

which implies

,ri<1_ .1 )én_b ’ 7’=19 2) e, V,
min k;

SO

(max 'ri)<1— 1 )g n—b

which is equivalent to

This completes the proof.

Remark 2.1. The inequality of Lemma 2.1 is obviously equivalent to

2.1) éri—<1— 1 >(min ryw<b< n—(1— 1 >(max ryw.
i max k; i=1 min k,
In particular, when the design is equireplicated (i.e., r\=7r,=---=r,=

r, say),

T r
<b=( Jo.
<maxkj )v_ " \mink; Y

These are already given for a BB design by Kageyama and Tsuji ([8],
Theorem 3.3). Thus, it should also be noted that Lemma 2.1 holds
for both a PBB design and a BB design. Though bounds on the num-
ber of blocks are variously known, a mathematical expression of an
inequality for a block design is given by Kageyama [6] in the form of
including all of the known results.

LEMMA 2.2. For a PBB design with parameters v, b, r;, k; (1=1,
21 s, Vg j=1’2, "',b)r

>Sir—b
minr, ==,
v—1

PrOOF. From Lemma 2.1 it follows that for n:Sv‘_, 7
i=1
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maxk, n—b

min r,=
max k;—1 v

Furthermore, from v=max k; it holds that

maxk, n—b_n—b
max k,—1 v = v—1"
Thus, we obtain min r,=(n—>b)/(v—1).
Remark 2.2. Lemma 2.2 implies
2.2) b=} 7,—(min r) (v—1).

However, since v=maxk,, bound (2.1) is more stringent than bound
(2.2).

We next derive some bounds on the extreme eigenvalues of the
C-matrix.

THEOREM 2.1. For a PBB design N with parameters v, b, r;, k;
=12, ---,v; 7=1,2, ---,b) im which C=D,—ND;'N'=p At +p,At+
v +pAL,

ﬁ} r,—b

Pmin= A é Pmax «

v—1
Proor. Since tr (C)=é r;—b and ﬁ tr (AY)=v—1, the required
bounds clearly follow from the defining relation.

Remark 2.3. It is obvious that two bounds in Theorem 2.1 are
attainable only when the PBB design is a BB design. Furthermore, it
is known (cf. [4], [5]) that in general
(2.3) Prmax=MAX 7; .

1isy
From Lemma 2.2 and Theorem 2.1, it follows that
pminémin ;.
1=is0
This is inferior to Theorem 2.1, but this expression is very simple and
practical.

In general, it holds that p,,>0. As another lower bound reflect-
ing certain block structure, we have

THEOREM 2.2. For a PBB design N =||n;| with parameters v, b,
ry, k; 1=1,2,---,v; 7=1,2,---,b) @ which C=D,—ND;'N'=p,At+
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p2A§+ e +ppA§H

. 2(2 fri—b> (v—2)(max 1)

v min k;

’
[
Whe’re 2“/ 22 'nijn,-;,- .
Jj=1

ProOF. From Frobenius’ theorem (cf. [1], p. 66), we have

pminzz min cii+(v_2)d ’
1Sisv

where ¢;; is the i-th diagonal element of the C-matrix and d is the
numerically largest absolute value of off-diagonal elements of C. Now,

Cu=<ié ri—b>/'v ,

ld|: max { ni]lcnl 1 + + 1bnz b}

154,i'sv k.
< max NPyt oo+ NNy
R min k;
=(max 2,;,)/(min k,) ,

1,2

b
where 1,,=3>)n,m,,. Hence, we can get the required bound of p.;,
i=1

A lower bound of p... is given in Theorem 2.1.

As other bounds
reflecting certain block structure, we have

THEOREM 2.3. For a PBB design N =||n|| with parameters v, b
Ty k; (1=1,2,---,9; 7=1,2,---,b) in which C=D,—ND;'N'=p, A%+
o +ppA§,,

pm;maxvﬁ“«l— 1 >+ o }
4,40 mink;/ mink;

. . , 1 Y
m,,Smm{r”-H‘z (1— >+ a }
Puin S0 2 max k; max k;
b
’Ll)he’re 2”: :E ’nu’nifj.
j=1

Proor. From a property of the C-matrix for the PBB design, it

holds that, for some orthogonal matrix T of order v,
01

02 0
TCT' =
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and so
X'TCT'XZ prax X'
for any x. Letting y=T'x, we get
(2.4) YCY=pn:l¥'y -

i (14
Choosing for y the column vector (0, ---,0,1/4/2,0, ---,0, —1/42,0,
-, 0y, (2.4) yields

1+'ri _l{ (nil Ny 1) (nlb Ny b) }
Pmax = A B 7

> Titre _._}_{ (Mg — i) + - - (M — 1) }
-2 2 min k;
_Tritre __1_{ T+ 1o — 20 }

2 2 min k;
_Tritre <1_ 1 > Aigy

2 min k, + mink; ’

b

where i, =3m;m,;. Thus, we get the required bound of pn.. On
j=1

the other hand, it holds that for any x'=(z,, -, Z,_, 0)

Omn X' XX TCT'x
Letting y=T'x, we get
(2.5) P Y=Y'Cy
for some y. Now, smce we can choose for y the column vector (0, -

0, 1/¢2,0, , 0, —1/F 0, .-+, 0), (2.5) yields

2 2
< ri 7Ty _lj (ny—n4) g (i —mn) }
L S A
<Tit? _1_{ (M —n)) + - - (M —140) }
-2 2 max k;,
— i+ _l{ Ti+7re—24:0 }
2 2 max k;
_TitTe <1_ 1 > Aigr .
2 max k; + max k;

Thus, we get the required bound of p.;.,.

The bounds in Theorem 2.3 are not practical in the sense that
they include parameters reflecting block structure. As bounds free
from these parameters of block structure, the proof of Theorem 2.3
obviously yields
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COROLLARY 2.1. For a PBB design with parameters v, b, r;, k;
(t=1,2,--+,v; 5=1,2, .-+, b) in which C=pAl+---+p,A},

rir b
gmax{ LRSS - }
Pmex =100 2 2mink,)’
ri+ry

pming min
i1/

It is clear that the bounds in Corollary 2.1 are inferior to those
in Theorem 2.3. However, the expression of Corollary 2.1 is more
practical.

We can give the best possible bound from Theorems 2.1, 2.2 and
2.3 and a bound (2.3).

ProprosITION 2.1. For a PBB design with parameters v, b, 7, k;
v b
(’I;=1, 27 e, V5 j:l, 2y cecy b) and ’n:zri:Zkﬁ
i=1 =1

v

min k;
. —b s (ridry 1 A
SeausMin (I3, min [P (- e
B P 2 max k; +maxk,

—b ritry 1 Air
Max{n , max{ i1 (1— _ > fid “S max =MAax r; ,
v—1" o 2 min k; +mmkj = Pmex =

b
where 1,;,=3>)m;m;,;. Note that n—b <min7r; and p.;,,>0.
i=1 v—
Remark 2.4. For a BB design, we have pj=-..=p,=(n—b)/(v—1).

In this case Proposition 2.1 yields several results given in Kageyama
and Tsuji [8].

We finally compare bounds in Proposition 2.1 by several examples
all of which are quoted from Kageyama [4].
(1) An example (an example on p. 596 in [4]) with pnin=1 and pn..=
3 implies

OzMaX {O’ _ﬂ‘} <pm;n§Min { 29 , 1_7} = 29 ,
6 1’ 6 11
29
3=M { ,3}3 max =4 .
o=

(2) An example (Example 15.3 in [4]) with pn..=(9—+v5)/4(=1.7) and
Pmax=(9++5)/4 (=2.81) implies
3 _ { 3} . {9 13}_ 9
= 0’_" = minéM ' T | T
5~ Max (0, Z) Spmn = Min i, =2y =
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5
2

Max (9, Bl <z,
(3) An example (Example 17.1 in [4]) with pn.,,=1 and pm..=2 implies

1 _Max {0, _1_} < poin< Min {1, i} _4
3 3 5'3) 3

3 7 3
2=M {_,_}s max =2 .
2 ax 5’ g) = fme=
(4) An example (an example on p. 606 in [4]) with pn.=1 and pux=
2 implies
4 . (8 11 8
0=M {0, — 2 <punzM {—,—}:—-,
ax 3 <p in =6 z

92— Max {_g_ 2} <P 2.

(5) An example (Example 18.6 in [4]) with pni,=2 and pun..=3 implies

12 8 12
0=Max {0, 0} < ppia=<Mi { }_._,
ax {0, 0} <pum in =3 =
-5’"— } 12 5 } Spmaxsg'
2 5’ 2

Thus, the bounds in Proposition 2.1 are stringent in general.
Furthermore, if we are considering expressions free from parameters
reflecting block structure, then simple bounds

v
257 :
O<pm1n——=-l"'_“— (Zmin r,)
v—1
v
25T
=t SPmaxSMaxX 7
v—1

appear to be the best for our purpose. In this sense Theorem 2.1 is
fundamental and powerful.

Incidentally, some known results on matrix theory in linear algebra
give bounds on eigenvalues p; of a symmetric C-matrix. However,
they may not be useful for this problem.

3. Special derivations of bounds

We here consider bounds on eigenvalues of the C-matrix of PBB
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designs based on some association schemes. Two methods of derivation
of bounds are used.

METHOD 1. For association matrices A, A4;, ---, A, of an associa-
tion scheme of p associate classes, we derive

D,— ND;'N'=pAl+p, A+ - - - +p,A}
=avo+a1A1+ ce +a/pAp

where a,’s are functions of some p;’s. So it holds that for any column
vector Xx,

x'(D,—ND;'N')x=3a,x' A, x ,
i=0

which yields a relation on p,’s by choosing an appropriate x. This re-
lation gives some bounds on p;’s. Note that x should be chosen ac-
cording to the form of association matrices A,’s.

METHOD 11. For association matrices A, A4;, ---, A, of an as-
sociation scheme of p associate classes, we first derive

ND;‘N':D,——avo—anl—— e "“aI,AI, y

as in the same notation as Method I. In this case, some bounds on p;’s
are derived from the fact that the i-th diagonal element of ND;'N’ is
greater than or equal to the elements of the i-th row or the i-th
column of ND;N' for +=1,2, .-+, v.

We now use these methods to derive bounds on eigenvalues of the
C-matrix of PBB designs based on concrete association schemes. For
description of association schemes, we refer to Raghavarao [9].

3.1. Group divisible association scheme

For a group divisible association scheme of v=mn treatments with
m groups of n treatments each,

Al=—L {(m—1)A,+(m—1)4,— Ay},
mn

=1 n—1)4,-4},

n
A=1,,

A,=diag {G,, G, -+, G} —1,,
A=G,—1,— A,

where I, is the identity matrix of order v and G, is an sXs matrix
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with positive unit elements everywhere. Hence, for a group divisible
PBB design N =||n,;|| with parameters v=mn, b, r, k; (:=1,2, ---,v;
j=1,2, ..., b) in which C=D,— ND;!N'=p, A+ p, At = {(m —1)p,/v+(n—1)
- py/n} Ag+ {(m—1)p/v—p:/n} A;— (0, /v)A;, We apply Methods I and II.
(i) Method I with x'=(,1,---,1,0, ---,0) yields

Nl AL,

n

n b —
21— (M1 - - +nnj)z/kj=M——l—)pl
i=1 =1 m
which implies
— n b n 2
U] oS- —L 5 (S1ny)
m i=1 max k; j=t \i=1
éé ”'i(l— 1 )
i=1 max k;

so

plé(—'}[ ér,) { m’”il (1— mai k, >} '

Note that {m/(m—1)}{1—1/(max k,)} <1 if and only if max k,<m.
(ii) Method I with x'=(1,1, ---,1, -1, -1, ---, —1,0, -+, 0) yields

-

which implies

(iii) Method II: The ¢-th diagonal element of ND;'N’ is given by
r,— {(m—=1)/(mn)} p,— {(n—1)/n}p,. On the other hand, the off-diagonal
elements of ND;'N’' are given by —{(m—1)/(mn)}pe,+(1/n)o, (corre-
sponding to the position of the first associates) or {1/(mm)}p, (corre-
sponding to the position of the second associates). Then the form of
association matrix A, implies

- m—1 P1— n—1 P — m=

i = Lot+Lp,  forall i=1,2, v

which yields

p=min7r; .
1gisv

Thus, we get
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THEOREM 3.1. For a group divisible PBB design N with parame-
ters v=mn (m groups of m treatments each), b, r, k; (1=1,2,---,v;
i=1,2, ---,b) in which C=p, A+ p, A},

péMin{—}—ﬁ‘f}m (l2r>{ m (1— L )}},
2n i=1 n i=1 m—1 max k;

0 <min 7, .
1£is

Remark 3.1. We may not see whether Theorem 3.1 gives an im-
provement of Proposition 2.1 for a group divisible case. Because, in
general, we may not evaluate eigenvalues p; and p,, However, it seems
that Theorem 3.1 is more stringent under a “ group divisible associa-
tion scheme ”,

3.2. Other association schemes

Applications of Methods I and II to other association schemes
(a triangular association scheme of two associate classes, a rectangular
association scheme of three associate classes) do not yield fine bounds
in the sense of an improvement of the bounds in Proposition 2.1, so
far as the author investigates. From various experience, the general
bounds in Proposition 2.1 appear to be relatively stringent.

Especially, block structures of equireplicated (r;=7r,=--.-=r,=7,
say) PBB designs based on various association schemes satisfying p,=7
for some 7 are characterized in Kageyama [7] by relating blocks with
association schemes.

Incidentally, for a group divisible PBB design N with parameters v,
b, ry, k; (1=1,2,---,v; 5=1,2,--+,b) in which C=D,—ND;'N'=p Al+
0, A%, if max p,<minr;,, we can show |[ND;'N’|#0 and so rank (ND;'N’)

i=1,2 12150
=v which yields the Fisher’s inequality b=v. It is conjectured that
this condition “max p,<minr;” gives a sufficient condition for the
validity of the Fisher’s inequality for any PBB design.

As a characterization of a binary PBB design with a constant
block size, as already mentioned in the introduction, Kageyama [4]
showed that the PBB design is a PBIB design. Finally, we generally
consider an m-ary case of such situation. An “m-ary” case in this
note means that the elements n,, of incidence matrix N=|n;|| of a
PBB design can take any of the values, 0,1, ---, or n—1 for some
positive integer n. In this case we get

PRrOPOSITION 3.1. An equiblock-sized n-ary PBB design is pairwise
partially balanced of index 4,.

ProOF. For a PBB design N=||n;|| with parameters v, b, r; (=
1,2, ---,v) and k, we have for (1.1)
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(3.1) D,—%NN’=a0A0+a1A1+ ta,4,

where a,=[bk— {tr (NN")}/k]/v and a; (2=1,2, ---, p) is some negative
constant. A comparison of off-diagonal elements in (3.1) yields

b
121 ’nunﬂ= —ka/

provided the 4-th and j-th treatments are f-th associates (f=1,2, ---,
p). Setting 1,=—ka, gives the required result.

Remark 3.2. In Proposition 3.1, when n=2 (i.e., n,;=0 or 1) the
i-th diagonal element of (3.1) implies

r——t=g,=2=l 1=1,2, .-+,

which show that replication numbers are constant. Thus we get a
PBIB design.

Acknowledgement

The author wishes to thank Mr. Tsuji for his suggestion of Method
I in Section 3.

HIROSHIMA UNIVERSITY

REFERENCES

[1] Bodewing, E. (1956). Matrix Calculus, North-Holland Publishing Company, Amster-
dam, 66.

[2] Bose, R. C. (1950). Least Squares Aspects of Analysis of Variance, Institute of Statis-
tics, University of North Carolina.

[3] Ishii, G. and Ogawa, J. (1965). On the analysis of balanced and partially balanced
block designs, Osaka City University Business Review, 81, 1-31.

[4] Kageyama, S. (1974). Reduction of associate classes for block designs and related
combinatorial arrangements, Hiroshima Math. J., 4, 527-618.

[5] Kageyama, S. (1977). Note on combinatorial arrangements, Hiroshima Math. J., 1,
449-458.

[6] Kageyama, S. (1979). Mathematical expression of an inequality for a block design,
Ann. Inst. Statist. Math., 31, A, 293-298.

[7] Kageyama, S. (1979). Some block structure of certain PBB designs, Ars Combinatoria,
8, 49-57.

[8] Kageyama, S. and Tsuji, T. (1980). Some bounds on balanced block designs, J.
Statist. Planning Inf., 4, 155-167.

[9] Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experi-
ments, Wiley, New York.

[10] Rao, V. R. (1958). A note on balanced designs, Ann. Math. Statist., 29, 290-294.



