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ON A “LACK OF MEMORY " PROPERTY
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Abstract

For two independent nonnegative random variables X and Y we
say that X is ageless relative to Y if the conditional probability P [X >
Y+2|X >Y] is defined and is equal to P[X >#] for all x>>0. Suppose
that X is ageless relative to a nonlattice Y with P[Y=0]<P[Y<X].
We show that the only such X is the exponential variable. As a corol-
lary it follows that exponential variable is the only one which possesses
the ageless property relative to a continuous variable.

The “ageless” or “lack of memory” property of the exponential
distribution is a well-known characteristic property : see, for instance,
Feller ([4], pp. 4568-460), Aczel [1] for the associated Cauchy functional
equation, and, for a refinement of the above property, Marsaglia and
Tubilla [7].

If now X and Y be two independent nonnegative random variables
(on some pr. space), we say that X is “ageless relative to Y” if
P[X>Y]>0 and

(1) PIX>Y+z|X>Y]=P[X>x], 2>0,
equivalently,
(2) |, Patwiew=| FoFaicw), >0,

where F(x)=1—F(x)=P[X<x] and G(y)=P[Y<y]. (2) obviously holds
for any G if F is exponential. The question arises: is the weaker
condition (2), true for some fixed G, already enough to characterize
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exponentiality for F'? Krishnaji [5], [6] obtained some partial results.
Noting that the basic functional equation (2) can essentially be dealt
with in the same way as the basic integral equation (10) of Rossberg
[10], we are able to establish the following :

THEOREM. Let X be ageless relative to Y. If Y is non-lattice and if
(3) P[Y=0]<P[X>Y]
then X 1s distributed exponentially.

Remark. Regarding condition (3), see the discussion after the
proof outlined below. In view of the definition of memorylessness, (3)
is satisfied if P[Y=0]=0 and in particular if Y has a continuous dis-
tribution.

ProOF. (1) is equivalent to
(4) | 6lt—oyWF®)=F@), o>0,

where a=P [X > Y] is positive, by definition (1). In fact 0<a<1, since
a=1 would imply, by (1), that P[X>Y +x]=P[X >x] for all >0,
which is impossible unless Y degenerates at zero. Let then K(y)=1—
a”'G[(—y)~], so that (4) becomes (cf. relation (10) of Rossberg, [10])

(5) S°_° K@—t)dF(t)=F(@), 2>0.
If we introduce H on R' according to (cf. relation (11) of Rossberg, [10])
S” K@—tdF{t)=F(x)+Hx), wzck,

then K and H are non-decreasing functions of bounded variation of R!
and we may therefore speak of the Laplace-Stieltjes transforms of F,
K and H:

f(s)=S e dF(z) k(s)=g e dK(z), h(s):g e dH (z) .
[0,00) (—,0] (—o,0]

Note that (i) k(0)=a™'>1, (ii) as o¢— —oo, k(e)— K(0)—K(0")=
P[Y=0]
P[X>Y]
(—o0,0) in view of k' being positive there, so that k(c*)=1 for a unique
negative number ¢*. Using inmter alia the assumed non-latticeness of
G also, we arrive, as in Rossberg [10], at the conclusion that for some
constants ¢ and p,

<1 by assumption (3), and (iii) &k is strictly increasing on
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f)=——+p=p+(1—p)
s—o
in view of f(0)=1. F' is thus the mixture of a degenerate and an
exponential distribution, and we check on substituting this form for

F in (2) that p=0, whence the theorem.

Discussion. Condition (3), which is needed to ensure the existence
of o* above, is rather awkward in that it involves X as well as Y.
Without (3), however, the theorem fails, as shown by the example:
let X and Y be independent; F(x)=z for 0=<2<1; G(y)=0 for y<O0,
1—e! for 0<y<1 and 1—e? for y=1. Then X is ageless relative to
Y, though X is not exponential. In fact, any X supported on [0, 1] is
ageless relative to any Y, provided 0<P[Y=0]=P[Y =1]<1.

For connections of our result with reliability theory, we refer to
Cinlar and Jagers [3], and to Barlow and Proschan [2].

With slight modification in our proof, we can obtain the following
variant of the Theorem :

Let X be a nonnegative random variable. If there exists a non-
lattice nonnegative random variable Y, independent of X, with P [Y =0]
<P[X=Y]and P[X=Y+2|X=Y]=P[X=2] for £=0, then X is ex-
ponential.

The author wishes to thank the referee for improving the presen-
tation of the results. He also wishes to thank Professor C. R. Rao
for calling his attention to the works of Ramachandran [9] and Shi-
mizu [11], where a more comprehensive discussion of (2), including the
case where Y has a lattice distribution, is made, using totally different
approaches.
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