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1. Introduction

This paper is concerned with the following two-stage tandem queue-
ing system (TQ for short). There are two service facilities (or servers
for short) arranged in tandem. Each customer arriving at the system
receives the service from the first server (server 1), and then the sec-
ond (server 2), before leaving the system. The queue before the server
1 may be allowed to grow unlimitedly, whereas no queue before the
server 2 is allowed. If the server 2 is busy, therefore, when a service
is completed to a customer by the server 1, this customer stays at the
first stage and blocks further service until the server 2 becomes free.
The service discipline is defined on FCFS basis. The nth customer C,
arrives at time T, and has a service time S,, by the server k (k=1, 2),
and we define 4,=7T,—T,_, for n=1,2,-.., where T,=0. It is assumed
that S;:, Sis) -+, So1, Ssey -+ 7y A1, 45, -+ are mutually independent,
the S,.’s are identically distributed random variables (r.v.’s) with dis-
tribution function (d.f.) G, (k=1, 2), and A,’s are also identically dis-
tributed r.v.’s. For such a TQ, a notation GI/G,— G, is employed.

For the GI/G,—G, queue, accurate analysis of the d.f.’s of such
characteristic quantities as the sojourn and delay times of a customer
and the number of customers in the system is extremely difficult and
even their expectations cannot be computed analytically, except for
some special cases, e.g. in Suzuki [10], Avi-Itzhak and Yadin [1], Tumura
and Ishikawa [11].

Therefore, bounds for these d.f.’s and expectations are of value.
Special interest lies in the bounds given by characteristics of other
queueing systems which are relatively analyzed easily. For usual GI/
G/m queues there exist such useful bounds included in Brumelle [4],
H. Stoyan and D. Stoyan [9] and Miyazawa [6].

From this viewpoint Sakasegawa and Yamazaki [7] tried to compare
the GI/G,— G, queue with the following single server queueing system
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(8Q), which was called as a reduced SQ (RSQ) of the TQ. There is a
single server queue with unlimited waiting room. Customers are served
individually and the service discipline is defined as FCFS. The arrival
process is identical with that of the GI/G,—G; queue, i.e., the inter-
arrival time between C,_; and C, is A,. Let’s denote the service time

of C, by S, (n=1,2,.---). It is assumed that the S,’s are independent
of the arrival process, and that they form a sequence of independent

identically distributed (i.i.d.) r.v.’s with d.f. G:
G(t)=Pr (8§,=t)=Pr (5,,V S,,,<t)=Gi(t)-Gu(t) ,

where XVY denotes the maximum of r.v.’s X and Y. We denote this

system by the notation GI/G/1.

In [7], by a comparison between the 2-stage TQ and its RSQ, upper
bounds on a mean delay time in the TQ were derived, and the exten-
sion of their results to K-stage TQ (=38) was tried. Furthermore, the
authors gave three conjectures from a series of simulation experiments,
one of which presented the fact that [the mean delay time in the 2-
stage TQ]=[the mean waiting time in its RSQ] held in the steady state.

The present paper is intended for more extended studies of the
last result, i.e., a semi-ordering relationship between the delay time in
the 2-stage TQ and the waiting time in its RSQ, which gives a posi-
tive answer to the above conjecture (Section 3). In Section 2, some
notations and lemmas used in Section 3 are given.

2. Preliminaries

In Section 3 we use the following semi-orderings of r.v.’s.

DEFINITION. Let X and Y make r.v.’s with d.f.’s F'y and Fy, re-
spectively. Then

(i) XLy e Fy(x)<Fy(x) for all z, where F(x)=1—F(),
(i) X2V g“’ F’X(t)dt§gm P (t)dt for all @, where S‘” P (t)dt< oo.
x x 0

. ) . . .
The semi-order <, of course, is the well-known stochastic ordering.

The semi-order 2 was introduced by Bessler and Veinott [2] and has
been used by H. Stoyan and D. Stoyan [9], Borovkov [3] and others in
order to investigate the order relationship between some queueing sys-
tems. In the case of the equal means, it formalizes the notion of one
distribution’s being more variable or more spread out than the other
(cf. Lemma 3 below).

@)
The following properties of < are used.
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LEMmA 1 ([9)).
(3) If XSV and YSZ, then X<Z for i=1, 2.

(b) If Z is independent of X and Y and X<Y, then X+Z<Y+Z for
i=1,2.

(¢) If X<V, then E(X)<E (Y) for i=1, 2.
(d) If X2Y, then 0V X20VY for i=1,2.
(¢) If XY, then X=Y.
LEMMA 2 (Borovkov [3]). X%Y is equivalent to E {0V (X—2)}=
E{0v(Y—2x)} for all .
LEMMA 3 (Stidham [8]). Suppose that S“F,,(t)dt<oo and E(X)=
0
E(Y). If there exists a number x, such that

<Fy(x) <X,

Fx(x){ then X2Y .

2Fy(x) x>0,
From Lemma 3 we have the following.

LEMMA 4. Let X,, X, and Y be mutually independent r.v.’s and let
X, ~X,, where the Sign L denotes the equality of distribution. If

Sm td Pr (X,VY<t)<oo, then
0

@2.1) X VYSXVY—X+X,.

ProOF. Let Z, and Z, be r.v.’s defined as Z,=X,VY, Z,=X,VY—
X,+X;. Because of Lemma 2, in order to prove (2.1) it is sufficient
to show that

(2.2) E{0V(Z—2)|Y}=E{0V(Z—2)|Y}

holds. For any realization value y of Y, let us define Z, ,=X,Vy and
Zg,y——:ley—Xl'i‘Xz- Cleal‘ly,

0 t<y
2.3) Pr (zl,ygn:{
Pr (X,=t) t=y
and
=0 t<y
(2.4) Pr (Zz,,,ét){
=Pr(X,=t) tzy.

Since X,~X,, a comparison of (2.3) with (2.4) immediately gives
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<Pr(Z,,=t) t<y
(2.5) Pr(Z,,=t)
2Pr(Z,,st) tzy.
Furthermore,
E(Z,,)=E(Z,)-EX)+E(X,)=E(Z,,) .
Hence, from Lemma 3 we can obtain
(2.6) Z1,,,(<;)Zz,,, ’
so that (2.2) follows by Lemma 2.
We need the following lemma to prove Lemma 6 below.

LEMMA 5 (Kawashima [5]). If X, and X, are t.i.d. r.v.’s, then
for any real numbers x,, x, and x,

2.7 Pr(X=w, Xi+X;Va,Sx)2Pr (X, =2, X\Va,+X,=Zxy) .

In the case where the constants z,, x, and x; are replaced by r.v.’s
Y, Z, and Z,, this lemma reads as follows:

LemMA 5. If X, and X; are i.t.d. r.v.’s and if rw.’s Y, Z, and
Z, are independent of X, and X,, then

@7) Pr(X,=Z, X+ X,VY<Z)=Pr(X,<Z, X,VY+X,<Z) .

LEMMA 6. Suppose that {X;; 1=1,2,---} and {Y;; 1=1,2,---} are
independent sequences of i.1.d. r.v.’s and they are independent of each
other. Then, for any {Z;; 1=1,2,---} which are independent of {X.}
and {Y;}, the following inequality holds.

(2.8) Pr (Xlgzl, X+ 3 X,VY,22, (i=2, 3,...,7,))
Jj=2
2Pr (X227, S XYt XSZ (=23, ) .
et

PrROOF. A direct application of Lemma 5 to the left-hand side of
(2.8) gives

(29) Pr <X1§Z1, X1+i XjVYjéZi (7::2,"',7?1)>
J=2

=Pr <XI§Z1: X+ X, VY, =min (Zi—é XjVYj>> .
i=

2sisn

=Pr <X1§Z1, X, VY, + X,<min <Z¢—jé3 X,V Yj>>

25isn

=Pr <X1§_Z1, X\VY,+X,£7,
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i
XV Gt 3 X VY52 (i=3,---,n)) .

By applying Lemma 5’ again to the conditional probability of the right-
hand side of (2.9), we can obtain the conditional result

2.10) Pr(Xlgzl, X\VYit X227,
XVt Xt 3 X VY S 2, (=3, )| XS )
—Pr (ngzz—xlvn,

X+ XV Yismin (Z-3 X,VY, - X,V V) | Xis7)
j=t1

35isn
=Pr <X2_S_Z2—‘X1VY2;

X, VY, +X;<min (Zi_é XjVYj“‘Xl\/Yz) X1§Z1>
j

3sisn j

—Pr (X,ng, XY+ X2, XNV Y+ XV Y+ X <7,
XIVY2+X2\/Y3+X3+éXJVYj§Zi
(i=4,---,n)lX1§Z1> .

Unconditioning, we have
(2.11) Pr<XI§Z1, XY+ X <7,
XIVY}+X2+§X,vY,§Z,- (i=3,---,n)>
2Pr (X224, XVt XS4, XNVt VYt XS,
XVt XV Yot Xk S X VY,SZ, (=4, m)

Continuation of this procedure yields (2.8).

3. Order relationship between GI/G,—G, and GI/G/1 queues
For the GI/G,— G, queue we introduce the following notation.

W.(v)=the sum of the waiting (in front of the server 1) and blocking
times of C, (i.e., the delay time of C,) when the system starts
from the initial condition that the delay time of C,; is v.

For the GI/G/I queue, we denote the waiting time of C, by W, (v) with
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the initial condition that the waiting time of C, is .
Sakasegawa and Yamazaki [7] showed that

3.1) Wi(0) + 812 Wi(0) +5,
so that,
(3.2) E (W,)<E (W,(v))+E (S)—E (S,.) .

They conjectured that
(3.3) E(W)<E (W)".

The objective in this section is to prove the following stronger re-
sult for (3.3).

THEOREM. If E (W,(v))<oc, then
(3.4) W)= W) .

PrOOF. It is well-known that for the GI/G/1 queue
(3.5) W (0)=0V (U,_1+ Wooi(v)) ,

where U,_,=S, ,—A,. We also have the following recurrence relation
for the GI/G;— G; queue (cf. [7]).

(3'6) Wn(v)ZOV(U—I+Sl,n—l_Sl,n+Wn—l(v)) ’

where U,_;=S,,VS,..i—A,. We note that the recurrence relation (3.5)
gives

3.7 Wn(v)=0vl7 —1\/(l~] —1+ﬁn-2)\/ ree V(ﬁ e +ﬁ2)
VU4 +U+v)

=max [0,:2:,_ Sy,; VS, ;— A, +8,0) (1=n—1,n-2,---, 1)]
imax [0, é (S]_yj\/Sﬁ,j—Aj_l“i"ain’v) (?::2, 3, crey 'n/):l 9
Jj=2

where the symbol 4. is the Kronecker delta, and, similarly, (3.6) leads

3.8) W,(0)=0VU,.1+8S,1-1—S1 ) VUt + U2+ 81 e —Sia) Vo o
V(Uics4Upg+ - -+ U+ S, —S1,0) V(Ui + U g+ - -
+U1+Sm+'v—sl,n)

=max [O, é (S1,jVSz,_/_l—'Aj)+Sl,t—1—Sl,n+32iv

D We often use an r.v. X without a subscript »#, which indicates an r.v. with a limit-
ing d.f. of X, (e.g., W instead of Wy).
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(t=n,n-1,..-, 2)]
1
~ max [09 g (S1,; VS, 41— A)+ Sy, 01— Si,1+H8in_ny?
(i=1, 2,---,'n,—1)] :

From (3.7), (3.8) and (d) of Lemma 1, to prove (3.4) it suffices to show
that

(3.9)  max [ ]2 (S,V S, — Ay ) 400 (i=2,3,-- -, n)]
@) i
=max [E (Sl,jVS2,j+1—A-j)+S1,i+1_Sl,l+ai(n—1)v
(i=1, 2,---,n—1)] .

We now show (3.9). By applying Lemma 4 to the left-hand side
of (3.9), we can obtain

(3.10) max [ ﬁ} (S0,V S, — A, ) +30v (i=2,3,-- -, n)]
=5,3V S, 2— A+ max [o, 2 (S VS j— A, )40,
(=3, -, n)]
2500V Sss— 8114811 — A1+ max [o, jz (S, VSu,— A1)
+d,v (1=38,---, n)]
L8,V Sys— Sy 1+, s— A+ max [0, jz (S1,V S, — A1)

+ainv (i:31' Y n)]
=811VSs:—S;,1— A+ By,

where B,=max [Sl,z, i (Sy; VS, ;—A;_)+8S,:+8,v (1=8,---, n)]. Lem-
j=3

ma 6 gives
8.11) Pr(B,<x)=Pr (sl,zgx, St 31 81,V S0, S+ 3] A0
J= j=
(i=3, sy, n))

i-1 i—1
=Pr (Sl,zéw: jgz Sl,jvSZ,j+l+Sl,i§x+j_§ A;—3,v
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(i=3,--, n)>=Pr (B,<z)

where B,=max [Sm, :2: (Si;VSsji1—A)+S, i +8,v (1=8,- -+, n)]. From
(b) of Lemma 1, (3.10) and (3.11) we have

(3.12) max [ Jz (S, Ss = A, )48, (i=2,- -, 'n)]

@
§S1,1VS2,2—SI,1—A1+B1
W
§S1,1VS2,2_S1,1_A1+B2 .
Because the right-hand side of (3.12) is identical with that of (3.9),
(8.9) follows by Lemma 1.

It is well-known that both W,(v) and W,(v) converge for n— oo in
distribution if E (U)<0. If, moreover, E(S?) and E(A) are finite in
addition, expectations of the limiting d.f.’s of W,(v) and W,(v) exist.
Hence we can obtain from the above theorem

COROLLARY. If E(U)<0, E(A)<oo and E ((S;VS,)})< oo, then
(3.13) W=Tim W,(v) 2lim W,(0)=W ,
so that (3.3) follows.

Finally, in order to show that E (W) is the best as lower bounds
on the mean delay time concerning the TQ indicated in this paper, we
consider a special case where the service time by the server 1 is con-
stant, i.e., GI/D—G queue. For this TQ, in [7]

(3.14) W.(v) ~W,(v)
was derived and therefore,
(3.15) E(W)=E (W) .

(3.15) proves the above.
We can obtain the following remark by a combination of (3.4) and
(3.14).

Remark. Let’s denote by GI/G—D a dual TQ of the GI/D—G
queue which is obtained by interchanging two servers. Then,

(3.16) [W,(v) in the GI/D—G queue](zé)[Wn(v) in the GI/G— D queue]? .

2 For a departure time epoch of Cu, a stronger result, i.e.,
[the departure epoch of Cp from GI/D—G queue]

g[that from the GI/G—D queue] with the same initial condition
has been derived by Kawashima [5].
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