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ASYMPTOTIC BEHAVIOR OF DIFFERENCE
BETWEEN A FINITE PREDICTOR AND AN INFINITE PREDICTOR
FOR A WEAKLY STATIONARY STOCHASTIC PROCESS
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Let ¢% be the variance of the difference between the finite predic-
tor made from the finite history of a weakly stationary stochastic
process with the observation time T and the infinite predictor made
from the infinite history of the same process. In this paper, we shall
give conditions under which we can evaluate the decreasing speed of
oy as T tends to infinity. These conditions are related to the analytic
properties of the outer factor of the spectral density function.

1. Preliminaries

Let X(¢) be a complex valued weakly stationary stochastic process
of te R (real line) with mean value zero and finite variance and f(x)
be the spectral density for the covariance function of X(¢), which
satisfies conditions

f(x) e L\R, dx), f(x)>0, a.e.

and

1.1) S: %dw—m.

We shall denote by ||h||:(gllh(x)|2dx>l/2 and ||Ic||,:<gllk(x)|2f(x)

-dx)m the norms of functions ke L*R,dx) and ke LYR, f(x)dx), re-
spectively. e,=e¢(x)=¢"* and H, ,, denotes the closed linear span of the
functions e,: a=<t<b in LR, f(x)dx) for a,b: —c0c=Zas<b<oco. We

shall denote by h=%Fh the Fourier transform of h e LX(R, dx) which is
defined by

(1.2) h=lim¢, in L¥R,dw)

A—oo
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with

1

A
S h(t)e~"=dt .
-4

We shall also write this as
(1.4) h(z)=1i.m. ¢ ,(x) .
A—o0

Let H*'(H*) be Hardy space over the upper (lower) half plane in the
complex domain. Under the condition (1.1), there exists an outer func-
tion g € H*" such that

(1.5) flx)=|g(x)}}, a.e., reER,
(1.6) gI{(o,m)=H2+

and its analytic extension into the upper half plane is

_ 1 (> 1+22 log f(2) } _ .
1.7 = { S dal, 2=
1.7 0@)=exp 5= S g z=x+1y

(Tbragimov-Rozanov [6] p. 34). g(z)=g(?) is analytic extension which is
the outer factor of f(x) in the lower half plane whose value on the
real line is g(x), the complex conjugate of g(x). H®*'(H*) may be also
defined by

(1.8) H*={he LYR, dz); h(u)=0 a.e., u=0}
(1.9) HY ={he LXR, dz); h(v)=0 a.e., v=0}

and we have LXR,dx)=H* @H?. We shall denote by P (Q) the or-
thogonal projection from L¥R, dz) onto H*'(H*") and by U the orthogo-
nal projection from LR, f(x)dx) onto H_..o.

Let the modulus of continuity of an a.e. bounded function ¢(2) be

(1.10) o3, $)= sup lp(2+1)—g(Dl-,
where
(111) pll=ess sup |4()].

Write ¢ € 4,, when (3, $)=0(5*) as & tends to zero, 0<a<1. The mean
modulus of continuity of a function ¢ € L?(R, dx) is defined by

(L.12) (0, )= Sup 1$(3+0) 9Dl

where

lel=({"_tooraz)”.
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2. Finite prediction and infinite prediction

The classical Szegd’s theorem can be formulated in the following
way using the projection operator defined in the preceding section.

THEOREM A (Seghier [7], p. 891). For s>0, an infinite predictor
(or the projection of e, onto H_..,,) ts given by the formula :

(2.1) U(ea)’:g_lQ(exg):es_g—IP(esg) ’

where g(x) 18 the complex comjugate of an outer factor g(x) € H ™ such
that |g(x)}*=f(x) 1s the spectral density of the covariance for a weakly
stationary process X(t).

In order to give a finite predictor, we need some other notations.
Let M, be the linear operator from H*®" into H® defined by

(2.2) Mp0=Qerg/g0),  for 6 ¢ H*
and M be the linear operator from H? into H*®" defined by
(2.3) M#0=P(e_rglg0) , for 6 ¢ H* .

Using the stationarity of our stochastic process and shifting the time
scale, we can modify the Seghier’s Proposition 3 ([7]) in the following
way.

THEOREM B (Modification of Seghier’s Proposition 3, [7]). Let P;
be the orthogonal projection from LY R, f(x)dx) onto H_.oNH_ r ., and
assume the operator I —MXM, can be inversible. Then for s>0,

(2.4) Pr(e)=e,—e_rg~ ' Mp(I — MFM;)"'b,4g~'(I — M#M;)™'b,
where b,= — P(ge,).

According to Seghier’s result, the projection of e, onto H_.,N
H_, ., a>0 is given by

(2.5) e,—e_,g ' M(I—M*M)™'b,+-e.97 (I —M*M)™'b, ,

where s>a, b,=—P(ge,_.), M(6)=Q(exg9/gf) for 6¢ H** and M*(0)=
P(e_,.g/g6) for 6 ¢ H*>. We shall have (2.4) when we multiply (2.5) by
e_, and replace s—a by s and 2a by T. '

II-]| also denotes the operator norm without ambiguity.

LEMMA 2.1. Operator norms of M, and M} satisfy conditions:
(2.6) (i) IM)I=1, |IMF=1
and
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(i) ||Mpll, |1MF| are nonincreasing in T.
ProOF. We have

(2.7) | M-0]|=]|Q(erg/go)l

=|IQlI-llerg/gd||=IQIl- 1161l »
while @ is a projection operator and hence ||Q||£1 and ||M;||£1. For
the proof of the second part of the lemma, we use the fact that the

Fourier transform & and its inverse transform & ~! are isometric oper-
ators. We have for 4 ¢ H*',

(2.8) || M,0]|=IQezg/g0)
=L (Z(erg/goN 1)l
=[|(F(ezg9/g0))1 -l

=( [t

A 2 1/2
Lim. —1 S e‘“g(x)/@(m)ﬂ(x)e‘“‘dx‘ dt)
=tim|{;

Ao 2r
where 1,_ denotes the indicator function of (—o0,0). Thus for each
0 ¢ H*' it is evident from (2.8) that ||M,d| is nonincreasing in 7.
The following theorem plays an important role for giving the finite
predictor.

127 S'_‘A ¢it7g()[g(x)0(x)de ‘ 2dt>l/2 ,

THEOREM C (Dym [3], p. 402). If f! is locally integrable, then
2.9) H_.nN H<_T,m>=‘go H p_ .o
If also ||M,||<1 for some ¢=0, then
(2.10) He ooNHe rwy=H_rop
for every T >ec.

It will be assumed throughout in this section and the followings
that ||M,||[<1 for some ¢=0 and consider only 7’s which are larger
than ¢ since we shall deal with the degree of the asymptotic smallness
of || M,|| as T goes to infinity. When it is also assumed that f' is
locally integrable, the finite predictor of X(s), >0 knowing the history
of X(t), —T=<t=<0 is given from the projection of e, into H._, .,N
H._.. ., and its isometric transformation ¢, — X(u) in view of Theorem C.

We shall give conditions in theorems of the next sections, under
which we can evaluate the asymptotic order of the variance of its iso-
metric transform of the difference between the finite predictor (2.4)
and the infinite predictor (2.1) when the length T of an observation
time interval goes to infinity. We might have the better approxima-
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tion of the infinite predictor by using the finite predictor when the
variance of the difference between them decreases faster.

The difference between the infinite predictor and the finite predic-
tor is given from (2.1) and (2.4).

(2'11) U(es)_PT(es)
=e,+97'b,—(e,—e_rg~ "M (I — M#M;)™'b,4+ g~ (I — M M;)™'b,)
=e_rg (I —M; M#)"'Mb,—g M1 — M, M) Myb, ,
where b,=—P(ge,). Here we used the fact that if |[M;||<1, then
(212)  (I-MFMp) ' =I+M#Mp+(MFEM Y+ (MFMp) + - .

The variance ¢% of the random variable transformed isometrically
from (2.11) can be evaluated in the following way.
(2.13) o, =||U(e)— Prle)ll,
=|le-rg~(I — My M)"'Mpb,—g "M #(I— M, M})""M:b,|,
ST =M M) QA+ | MFD I M|

while we have

1 < 1
—IMFNM | T 1—¢

(2.14) (L =M M)~ =5

as far as |[M;]|<e<1, T=c for some nonnegative number ¢ and we
have assumed this. Hence we have seen from (2.13) and (2.14) that
the speed of decrease for o, as T tends to infinity is less than the
constant multiple of the one for ||Mb,].

In the following section, using the relation (2.8) we shall give
theorems containing conditions under which we can evaluate the speed
approaching zero for the variance o¢% defined by (2.13) as T tends to
infinity and we shall prove them in Sections 4 and 5.

3. Theorems

o% was defined in (2.13) as the variance of the difference between
the finite predictor made from the finite history with the observation
interval T and the infinite predictor made from the infinite history.
We shall deal with the decreasing speed of o, as T tends to infinity.

Let g(x) be an outer function for the spectral density f(x) of the
stationary stochastic process X(t) ((1.5)-(1.7)).

THEOREM 1. If eg(x), a>0 agrees a.e. on the real awxis with the
reciprocal of an entire function of exponential type<a (Kawata [5],
p. 461), then we have
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(3.1) o;=0  for T=2a.

THEOREM 2. Suppose the function g(x)™ an outer function in the
lower half plane can be extended amalytically into the strip, z=x+1y,
0=y<B in the upper half plane. Moreover we assume this analytic ex-
tension g(2)/g(z) is bounded in the closed strip 0Zy<y for some non-
negative number y<pB:

(3.2) l9(2)/9(2)|= K, ,

where K, is a finite constant only depending on y. Then we have
(3.3) or=0(K,e™'")

Sfor large T.

Proofs of these theorems are given in Section 4.

Example 1. If the spectral density is

1
3.4 ==,
(3.4) f@)=r—
then the outer function is
3.5 =
(3.5) o) =—1~

(This is an outer function. See Devinatz [1], p. 86.) and its reciprocal
function is g(x)'=x2—14. In this case g(2)~! is an entire function. By
Theorem 1, ¢,=0 for any T =0.

Erxample 2. If the spectral density is

x4
(3.6) fe) =

then the outer function is

_ 420
o0 o=y
and
(3.8) 9(z) _ (z—1)"(2+21)

92 (x40 (e—21)

which is analytic in z=2+1y, —1<y<2 and bounded in z, 0<y<y<2.
By Theorem 2, we have

3.9) ar,=0(e™7), for any y<2.
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THEOREM 3. Let |M;||<1 for T=c, some positive constant. Then
(3.10) 73 =0(3 (12T, 915)).
Jor T=e.

COROLLARY. Suppose ||M;||<1 for T =c, for some positive constant
and

(3.11) Arg g(x) € 4,

for some B>0, where for any complex number z, Argz is the principal
argument of 2z, —x<Argz<n. Then we have for T=c

(3.12) ap=0Q1/T?).

Proofs of Theorem 3 and this corollary are given in Section 5.

4. Proofs of Theorems 1 and 2

(I) Proof of Theorem 1

We have
(4.1) | Mb|| <[ M| 1]b,]]
and
(4.2) l1b]|=11 P(e:9)l

slgl=(\"_ s@ys) ",

which is the square root of the variance of the stochastic process and
is finite. Hence we have only to consider the speed of decrease for
|M;| instead of ¢, in view of (2.13). Under the condition of Theorem
1, we can find from Lemma 2.1 of Dym [2], p. 25 that e***-g(x)g ()
agree a.e. on the real line with an inner function j(x) in the upper
half plane. In this case, from (2.8) we have for T =2« that

“9 1M 61= S: Lim. l ¢12; S: etog(2)g ()0 (x)das Izdt
- S: Lim. 7}27 SA ¢' 72 ()0 (x)da | ‘dt
=0

because 6 € H*' and j6 ¢ H*'.
(4.4) || M ||*= sup || M. 0|"/||61*

feH
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=0,
for T'=2a, which completes the proof of Theorem 1.

(II) Proof of Theorem 2

By assumptions of our theorem, we can find using the Cauchy’s
integral formula that

4.5) |, e“s@F @o@dz=0,
A
where I, is the contour of a rectangle in the upper half plane, z=2

+1y, 0<egsy=<y, —A<x<A for positive A (See Fig. 1). Hence we
can write from (4.5)

(4.6) S" ¢tritg(z+ ie)g Y@+ ie)8(a+ ie)dw
-4
+i| e vga+in A+ oA+ iy
A
=" e g+ ing @+ i Hinds

T
€

+ig e trg(— A+iy)gT(— A+iy)i(— A+iy)dy .

K}
iy
. i€ \ .
—A 0 A
Fig. 1
Let
A A
(4.7) (Gt )] =—e S Go+iy)eda ,
V21 J-a

where G(2)=g(2)g7'(2)0(z), z=2+1y.
Since from our assumption, G(x+1y) € L¥ R, dx), ¥ >0, there exists
for each >0,

(4.8) G(t, )=11.m. [G(t, 9. -

Since 6(z) belongs to H*", we have for some constant C >0
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(4.9) 160(2)|=Cly e, for z=x+1y, y=¢,

and 6(2) converges to zero as |z| — oo uniformly in y, y=¢ (Kawata [5],
p. 219). Thus from (3.2) G(+A+1y) tends to zero boundedly in y, e=
y<7 as A tends to infinity and hence from (4.6) and (4.8) we have

(4.10) e~ G(t, &)=eG(t, 7) .
If we denote by G(t):l.Ai.m.SA G(z)e**dx the Fourier transform of
— —4

G(x)=G(x+01) € LX(R, dx), then we have by the Parseval’s identity and
the Minkowski’s inequality

(4.11)  ||G(t, ) —G®)||=]IG(x+1ie)— ~G@)

:6; Gatie) T g@)

L 55833

-l-(S: Zlﬂ(x+ie)—0(x)]zdx>‘/2

(4.12) lim 9@+ _g@) 5.
0 gla+ie) gla)’

dx)

g(x+1e)

Since

the first term in (4.11) tends to zero by the dominated convergence
and the second term tends to zero by the property of H®*' function

o(x).
From (2.8), (4.10) and (4.11)
(4.13) || M0
—th 1 |S‘ ¢itmg(2)g~ () 0(x)da | dt
a1 o 27 |)- g
:g Lim. Lim —1_ S‘ e"""g(x+ie),(“]"(x—l—is)ﬁ(x—{—ie)dxlzdt
T -0 A \/271- -4
. *° 1 4 . = . . 4
=11mS e S e“”"‘g(x+zr)g“(x+zr)0(x+zr)da:‘ dt
A—oo JT O2r J-a

<e‘2TTK28 |6(x) Pdis
which is the desired result.

5. Proofs of Theorem 3 and Corollary

Proofs of Theorem 3 and its corollary will be given as a series of
certain lemmas.



110 AKIO ARIMOTO
LEMMA 1. Let ||M;||<1 for T=c, some positive c. Then
.1) 03 =0(3 wi(1/2°T, gb))
k=0

holds.

Denote by F(t) the inverse Fourier transform of gg 'b,(x), then we
have

(5.2) F(t)=1im. ~/— S: 9@)F (@)b(w)eda
and
g(x+h/2) g(x—h/2)
(5.3) i +h/2)b(a:+h/2) o hlz)b(x h/2)
=1.j.gl. {— ~/22%_ Sj F(t) sin = th ‘“’dt}.

By the Parseval’s equality, it follows that

® | g®+h/2) o g(x—h/2) _ ’
Gy [ [ i)~ S b o) | o

—4 S |F(6)] sin® %—dt
which is at most equal to wi(h, gg~*b,). Thus we have from (5.4)
(5.5) wih, gg7'b) = S::h | F'(t)Pdt

because of sin x> 2 x for 0<x<r/2. Accordingly
T

ok+1/9p

(5.6) W(h[2", gg-lb,)gg" "\F@yrae,  k=0,1,2, -
z2%/2h

By adding these inequalities, we find

5.7 [ IF@ldtsC 5 oihi2, 50,

for some constant C>0.
On the other hand, from (2.8)

(5.8) 1:b, = | eyt

and thus it follows from (2.14), (5.7) and (5.8)
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(5.9) 4 <C 3 eu(l/2T, gg~'b)"
which completes the proof.

LEMMA 2. We have
(5.10) wy(3, gg7'b,)=Cwl(3, gg™")
for some constant C>0.

From the definition (1.12) of the mean modulus of continuity, we
have

(5.11) w3, 96‘1bs)=s‘1p<8;

|h| =8

g(x+h) _ 9() o\
JEL b )= I b,(x)‘ dx) .

The last integral in (5.11) is less than

(5.12) (S: |b,(x+h)—bs(x)|2dm>l/2+ <S°°m 1b,()

glx+h) _ g(x) 2dx>”2
glz+h)  g(x)

by the Minkowski’s inequality.
On the other hand, we have

(5.13) JH=F@@)=0 for t>0,
because g(t) € H*. Thus we have from (2.4)

(5.14) by(x)=—P(gz)=—F(F(ge.)1r+)
- le_” S:e“”f;(t—s)dt.
Since gzj(u)=gj(—u), we have
(5.15) b(x) = ‘/% So w075\
and
(5.16) @ Th)—b@)= le_” S:e“""‘”(e““"”‘——1)ﬁ(u)du.

By the Parseval’s equality
G117 be+m—b@rde={ [ee—1p g Fdu
<Rt So \5(u) Pdu < his® S“’ f@)de .

Since lim w(h, ¢)/h>0 holds for a function ¢(x) which is not identically
—0
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a constant (Timan [8], p. 104), we have from (5.12), (5.17) and (4.2)
the desired result (5.10).

LEMMA 3. Suppose
(5.18) Argg(x) e 4;,
then we have
(5.19) o(3, gg~") < Co*
for some constant C>0.

Since we have

(5.20) g(m) =gl A 0@
9(x)

it follows that

(5.21) g(x+h) _ g(x) é]eh‘Argg(.r+h)_e2iArgq(z)|
gx+h) g(x)
=2|Arg g(x+h)—Arg g(z)|
=<Ch*

for some constant C>0, and thus we have (5.19).
Now combining the Lemmas 1 and 2, we have Theorem 3. Fur-
thermore using the Lemma 3, we have the corollary.

Acknowledgement

The author would like to express his thanks to Professor Tatsuo
Kawata for his valuable guidance. He is also grateful to the referee
for his useful comments.

MUSASHI INSTITUTE OF TECHNOLOGY

REFERENCES

[1] Devinatz, A. (1967). On Wiener-Hopf Operators, Proc. Irvine Conf. on Functional
Analysis, Washington D.C., 81-118.

[2] Dym, H. (1977). Trace formulas for a class of Toeplitz-like operators, Israel J. Math.,
27, 21-48.

[3] Dym, H. (1978). A problem in trigonometric approximation theory, Illinois J. Math.,
22, 402-403.

[4] Grenander, U. and G. Szego (1958). Toeplitz Forms and Their Applications, Univ. of
California Press, Berkeley.

[5] Kawata, T. (1972). Fourier Analysis in Probability Theory, Academic Press, New York.

[6] Ibragimov, I. A. and Rozanov, Yu. A. (1978). Gaussian Random Processes, Springer-Ver.



ASYMPTOTIC BEHAVIOR OF DIFFERENCE 113

[7] Seghier, A. (1978). Prediction d’un processus stationnaire du second ordre de co-
variance connue sur un intervale fini, Illinois J. Math., 22, 389-401.

[8]1 Timan, A. F. (1966). Theory of Approximation of Functions of a Real Variable, Hin-
dustan Pub. Cor., India.



