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1. Introduction

In many statistical decision problems it is reasonable to confine
attention to rules that are invariant with respect to a certain group
of transformations. If a given decision problem admits a sufficient
statistic, it is well known that the class of invariant rules based on
the sufficient statistic is essentially complete in the class of all invari-
ant rules under several assumptions; for example see Theorems 5.4.4
and 5.4.5 in Nabeya [9], p. 192. This result may be used to show that
if there exists a minimax invariant rule among invariant rules based
on sufficient statistie, it is minimax among all invariant rules.

In this paper we consider statistical prediction problems which are
invariant with respect to a certain group of transformations. In pre-
diction problems, an adequate statistic plays important roles as a suffi-
cient statistic does in ordinary statistical decision problems. For the
details, see papers by Skibinsky [10] and Takeuchi and Akahira [14].
The purpose of this paper is to show that the class of invariant pre-
diction rules based on the adequate statistic is essentially complete in
the class of all invariant prediction rules under several assumptions.

In Section 2, some results on invariant prediction rules and an
adequate statistic are stated. Our aimed results are stated in Section
3. Applying these results in Section 4, we obtain minimax invariant
predictors in some examples.

2. Invariant prediction rules and an adequate statistic

Let X be an observable random variable and Y a future random
variable. Let (¥, $) and (Y, C) be sample spaces of X and Y, respec-
tively. Let (Z, A)=(X XY, BxC) and P={P,: 0 € 6} be a family of
probability measures on (£, ) and @ a parameter space. Let & be
a group of measurable, one-to-one transformations from Z onto itself.

AssumMPTION 1. Each g€ & induces a one-to-one transformation g
from @ onto itself defined by P,(gA)=P,(A), A€, §€0.
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Let (¥, B)=(X, XX, BiXB,) and &G, G, and G, be groups of
measurable, one-to-one transformations from X¥;, X, and 4J onto them-
selves, respectively.

ASSUMPTION 2. There exist mappings from & to &, and &, and
a mapping from & XX, to &, whose image at (g, 2,) € XX, is de-
noted by g,,, such that for each ge &G, 2,€¢ X, v, € X, and y € Y,

(2.1) 9(%1, T2y Y)= (9121, G223, 92, Y)
where g, € G, and g, € G, are images of g to &, and &,, respectively.

Remark 1. In cases where the transformation on @ does not de-
pend on x, there is no need to consider X,.

Let (9D, F) be a decision space and G a group of measurable one-
to-one transformations from &9 onto itself. Let L(6,%y,d) be a loss
function from @ XY X 9D to [0, o) which is CXSF measurable for each
feb.

ASSUMPTION 3. There exists a mapping from &xX ¥, to &, whose
image at (g, ;) € XX, is denoted by g., such that for each ge g,
0€0, v, X, yeY and d € 9,

(2.2) L(g6, 9.9, 9. )=L(0, y, d) .

A prediction rule o will be defined as follows; for each x ¢ X,
d(-|x) is a probability measure on (D, F) and for each De &, 4(D|-)
is B measurable. The risk function of 4 is given by

(2.3) R(0, 3)= S g{g o L., s)a(dslx)} P(dz), 0¢0.

DEFINITION 1. A prediction rule ¢ is said to be invariant under
G if forall xe ¥, ge G and De Y,

(2.4) 3(!71:2Dlglxlr 9:%:)=0(D|2) .

A very important property of an invariant prediction rule is that
its risk function is constant on orbits. More precisely we have the
following lemma, the proof of which is the same as that of Theorem
1 of Ferguson [4], p. 150, so omitted.

LEMMA 1. If Assumptions 1 through 3 hold, then for any invariant
rule o

R(0,38)=R(gd,8), 06, geg.

Let t be a measurable mapping from (X, B) onto (4, U) and let
T =t(x).
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DEFINITION 2. A statistic 7 is said to be adequate for X w.r.t.
Y if T is sufficient for X and given 7, X and Y are conditionally in-
dependent.

Sugiura and Morimoto [12] provided a simple criterion with which
we can generally determine an adequate statistic.

LEMMA 2. If P is dominated by A=2A, X2, where 2, and i, are
probability measures on X and Y, respectively, then T is adequate for
X worit. Y if and only if

ar, _
di =h(@) f(¢(z), ¥)

where h(x) is B measurable and fi(t, y) is U XC measurable.

3. Main result

In this section we shall show that the class of invariant prediction
rules based on an adequate statistic, that is, the class of invariant
rules 4 for which given any De &, 8(D|-) is a function of the adequate
statistic, is essentially complete in the class of all invariant rules.

Let ¢, be a measurable mapping from (2, B,) onto (<, U,) and
t(x)=(t(x)), 25) for x=(x,, x,). Let X =(X,, X,).

AssuMPTION 4. X, and X, are independent, T,=t,(X,) is sufficient
for X, and T=#(X) is adequate for X w.r.t. Y.

Remark 2. In cases where ¥, is not needed (see Remark 1), this
Assumption means that T, is adequate.

AsSUMPTION 5. There exists a real valued function @ on B, x X,
such that

(i) for any xz, € Xy, Q(-|x,) is a probability measure on (2¥;, B);

(ii) for any Be B, Q(B|-) is a version of conditional probability
of B given B, ={t7' (U); UeUj};

(iii) for any x, € X, B€ B, and ¢, € Gy,

Q(g:Blg:x,)=Q(Bl|x,) .

THEOREM 1. If Assumptions 1 through 5 hold, then for any in-
variant prediction rule 8, there exists an imvariant prediction rule &,
based on T such that

(3.1) R(4, 6)=R(8, 3) , fecb.
PrRoOF. Define for De & and x € X,
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(3.2) 3y(D|w)= g -, %Dls, 2)Qds]) .

Then from Theorem 1 of Takeuchi and Akahira [14], we have (3.1).
Therefore the proof is complete if 3, is an invariant rule. From As-
sumption 5 for any ge G, x€ X and De %,

0y(Gz, D\ g:1, g%2) = S *, 5(§zzD s, g:%:)Q(ds|g,2x,)
=, %@.Dlgs, grQadslgy

= S o, ADIs, 2)Q(ds| )
:aO(DIx) ’
which completes the proof.

Assumption 5 is not easy to verify. The following lemma which
is given by Hall, et al. [6] (see Theorem 7.1, p. 608) may be used to
verify Assumption 5.

LEMMA 3. X, is a Borel subset of n-dimensional FEuclidean space
and B, the Borel o-field of X,. Let f, be the density function of X,
with respect to Lebesgue measure such that

Fol@) =hx)got(x)), z € X, 0€0

where t, is a measurable function from X, into k-dimensional Euclidean
space (k<n) with range I, h and g, are positive real-valued measurable
Sfunctions on X, and I, respectively. Let B, ={t:r'(U); Ue U} where
U, is the Borel ofield of I,. Suppose that there is an invariant open
set B¢ B, of P-measure 1 such that on B

(i) each g, € G, is continuously differentiable and the Jacobian de-
pends only on t(x,);

(ii) for each g, € G\, t(x)=t\(x]) implies t(g.x)=1.(9:2]) ;

(iii) tu(x) s comtinuously differentiable and the matrix ||[0t,(x,)/
owy]: j=1, -, k, i=1, .-+, n|| is of rank k where x,=(xy, - -, 1) and
(o) = (@), - -+, tul®1)) 5

(iv) for each g,€ G\, h(gx\)/h(x;) depends only on t(x,). Then As-
sumption 5 holds.

Now we consider the problem of the essential completeness of the
class of nonrandomized invariant prediction rules.

ASSUMPTION 6. &9 is a convex Borel subset of p-dimensional Eu-
clidean space, & is the Borel o-field of 9, L(d, y, d) is a convex func-
tion of de @ for all 0¢@ and yeY and L(0,y,d)— oo as |d||— oo
where ||d|*=d'd.
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ASSUMPTION 7. & contains only linear transformations, that is,
transformations of the form gd=Bd+c¢ where B is a pXp nonsingular
matrix and ¢ is a p-dimensional vector.

AssuMPTION 8. There exists a nonrandomized invariant prediction
rule based on T.

THEOREM 2. If Assumptions 1 through 8 hold, then for any in-
variant prediction rule 3 there exists a nonrandomized invariant pre-
diction rule ¢ based on T such that

R(0, )=z R(, ¢), 0cb.
ProOOF. Define ¢ by
(3.3) ¢(w)=g s8,(ds|x) if S lIsllgu(ds|z) < oo,
=¢(x), otherwise,

where §, is given by (3.2), ¢ is a nonrandomized invariant prediction
rule based on T which exists by Assumption 8 and

S sd,(ds|x)= <S 8,0(ds]x), - - -, S spao(dslx)> .
If R(6, 3,)< oo, then from (2.3)
S L0, Y, s)d(ds| X)< oo a.e. [P,].

Therefore from Theorem 1 and Remark in Ferguson [4], p. 78 and
Assumption 6, we have

S lIsliou(ds| X)< oo a.e. [P],
hence by Jensen’s inequality
Lo, Y, ¢(X))§S L, Y, s)3(ds| X) a.e. [P,
which implies that

(3.4) R(0, $)=R(0, d,) -

If R, 3,)=0co, it is clear that (38.4) holds. Hence from (3.1) the
proof is complete if ¢ is invariant, that is, ¢(g.%:, g:%2) =g, 6(x), for all
g€ G and x=(x,, x,) € X. From Assumption 7 and the invariance of g,
we have
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(3.5) S s8,(ds| g1, 9:25) = S 92,500(0,48] 911, 952)
= g,zg sdy(dslz) ,

which implies that S|[s]|ao(ds|gloc1, gu)<oo if and only if S[[sllao(ds|x)<

0. Then from (3.3) and (3.5) it is easy to see that ¢ is invariant.

Remark 3. From Theorem 2 if a nonrandomized invariant predic-
tion rule based on 7 is minimax among all nonrandomized invariant
prediction rules based on 7, then it is minimax among all invariant
prediction rules.

4. Examples

Now we apply the previous result to find a minimax invariant
predictor. In this section the space 9 is equal to 4.

4.1. Multivariate normal distribution

Let X, =1, ---, n+1, be independently normally distributed (p+g)-
dimensional random vectors with unknown mean g and unknown non-
singular covariance matrix X. Let n>p-+q.

The following partitions are used in the sequel:

XN 3y 3
Xi:< l>’ =1, -+, n+1, ,__<f‘1>, 2=< 1 1z>’
Xy : e Sy Ty

where X! and g, are px1 and 3y is pXp.

We can observe X, ---, X,, X}, but can not observe X/,,. The
purpose here is to predict X?,. This problem was considered in Ishii
[8], p. 482. Let X=(X,, -+, X,, X,,;) and Y=X,,. Ishii proposed as
a predictor of Y,

(4.1) P X) =X+ SuSi( Xt — X)),
where

X — )_(1):_1_ z i =<S11 S12>:n X e
X (X Lix, s=(3 $)=nE-DE-X
and X, is px1 and S, is pXp. But the justification of (4.1) has not
appeared in literatures as far as the author knows. We shall show
that (4.1) is a minimax invariant predictor under the following trans-
formations. Let G(m) be the group of m xm lower triangular matrices
with positive diagonal elements. Let &={(b, B); b is (p+g)x1 and
B e G(p+q)}, which operates on z; (¢=1, ---, n+1) as follows; for g=
(b, B)
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(4'2) g(wlr sty Ty xn+1):(b+Bx11 trty b+an! b+an+l) .

Let X, and X, be sample spaces of (Xi,---, X,) and X!,,, respectively.

Let @,=G, G,={(b, B); b, is px1 and B, € G(p)} and G,=G={(b,, B));
b, is ¢x1 and B, € G(q)}. We partition g=(b, B) € G as

b B, 0
() (2 2)
bg B21 B22
where b, is pX1 and B, is pXp. Then the mapping from & to &, by

(b, B)— (b, B;;) and the mappings from @x X, to G, and & by ((b, B),
2h41) — (b + Buxl,,, By) are defined. From (4.2) these mappings satisfy
(2.1).

Let 6=(g, 2) and we take the loss function defined by

4.3) L, y, d)y=(y—d) (Zp—325'3) (y—d) .

The induced transformation on the parameter space @ corresponding to
g € G is defined by

(4.4) (4, 3) — (Bu+b, BSB),  g=(b, B).

Then it is easy to see that (4.3) satisfies (2.2). Let T,=(X, S) and
T=(T,, X}.,). Then from Lemma 2 T is an adequate statistic and As-
sumption 4 holds. All parts of conditions of Lemma 3 can be verified
to hold (see [6], p. 611). Therefore Assumption 5 holds. It follows
easily that the other Assumptions hold. From Remark 3 we can con-
fine our attention to nonrandomized invariant prediction rules based on
T. The transformation ge & induces on the space of the adequate
statistic T the transformation

(ﬁy S: x:;+1) - (Bi'll_b, BSB,I Bllx:z+l+b1)

where g=(b, B). Therefore the invariance of a predictor ¢ based on
T means that for all (b, B) and (&, S, x.,,)

(4.5) ¢(Bx+b, BSB', Bz, .,+b,)=Byup(x, S, x),)+ BuXr+b; .
Putting b=—B% in (4.5), we get

(4.6) ¢(0, BSB', Byy(2},,—%,))=Bug(x, S, #}+,) + Bau(®h+1—Z1) — Bally .
Let S=AA’ where A €G(p+q). Put

A=(5" 4

Where A“ iS po. Then Su_:AuA{ly Szz_SnSJlSu:Ang;g and SZISl_ll=
AyAGl. Put B=A""in (4.6). Then we get
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80, I, A\ (21— %0)) = AR [¢(®, S, h41) — %] — An'SuSi'(@h 11— 21)
where I is the pXxp identity matrix. Therefore we get
4.7) &2, S, xL.)=r(x)+ Aph(A N Lk, —7,))

where r(x) is given by (4.1) and h(-) is some measurable function from
(R?, B?) to (R, B).

From Lemma 1, without loss of generality we assume (g, 2)=(0, I).
Then

4.8) R0, ), )=E Y —r(X)F+2 E (Y —r(X)) Auh( A7 (X}~ X))
+E || Aph(AGH (XL — X))

It is well known that (X, X4, Y), Su—SuS;:'S; and (Sy, S) are mu-
tually independent and under (g, 3)=(0, I) conditional means of Y —X,

given (X;, X,,) and of Sy,S;' given S, are zero, respectively (e.g. see
Theorem 6.4.1 in Giri [5], p. 120). Therefore we get

E (Y —r(X)) Aph( AT (X2 — X1))=0 .
Thus from (4.8) it turns out that (4.1) is a minimax invariant predictor.

Remark 4. When ¢=1, it is known that (4.1) is inadmissible if
p=3. This fact is first proved by Stein [11]. Superior predictors can
be constructed using estimators given by Baranchik [1] and Takada [13].

4.2. Exponential distribution

Let X, <X,<---<X, be order statistics of size n from the ex-
ponential distribution with the density 67! exp (—x/8), >0, 6>0.

We shall consider the prediction problem of X, for the situation
where the first r observations X, <X;<---<X,, 1<r<n, have been
observed. Let & be the group of transformations x;, — cx; (=1, ---,
r,m, ¢>0). We are now concerned with the minimax invariant pre-
dictor under the loss function (y—d)*/#’. In this case the space X; is
not needed. So we denote z; in Section 3 by x.

Let X=(X|, -+, X,) and Y=X,. Then the joint probability density
of X and Y is given by

(n_’r;‘l—l)! 6=V exp [__ <§ xi+y>/0} [exp (—=,/0)—exp (—y/O)]* !

for 0<x;< - -<2,<y and zero, otherwise. It follows from Lemma 2

that t(X)=<2 Xi,X,> is an adequate statistic. Let X ={x; 0<a, < -~

i=1

<z,}. Then the probability density of X is given by
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n! - r
— = 07" exp [— (E x1+(ner)x,>/0]
(n—n)! i=1
on X. According to Lemma 3, let A(x)=1 and

n!
(n—r)!

g(t(x))= 677 exp [—(ti(x) +1o(x))/0]

where t,(x):é z; and ty(x)=(n—7r)x,. Then it follows easily that the

matrix D(x)=|[0t,(x)/0x,]; ©=1,2, j=1, -+, r] is of rank 2 and all the
other assumptions in Lemma 3 hold. It is easily checked that as-
sumptions in Theorem 2 hold. Hence we confine our attention to non-

randomized invariant predictors based on T=#X). Let S=é X+

(n—7)X, and T'=(S, X,). Since T and T’ are equivalent, we consider
invariant predictors based on T’. It follows easily that they are given by

(4.9) AX)=h(X,/S)S,

where #(-) is some measurable function. Then the risk function of
(4.9) becomes

(4.10) R(0, 3)=E, [(Y —a(X))*/6"] .
Using Lemma 3 in Epstein and Sobel [3], p. 375, we have that
E(Y|X,=2,)=2,+0 > (n—i+1)".
i=r+1

We denote it by z,+af with a= i} (mn—1+1)"'. Then (4.10) is equal to
i

=r+1

(4.11) E, (Y —X,—ab0)}/0*+E, (X,—h(X,/S)S+ab)/6* .
Let g(t)=t—h(t). Then
(4.12) E, (X,—h(X,/S)S+ab)*|0*=E, (9(X,/S)S+ad)*/6* .

Since S is complete and sufficient (see Theorem 2 in [3], p. 877), from
Theorem of Basu [2] S and X,/S are independent. Therefore (4.12)
becomes

r(r+1) E, ¢4 X,/S)+2ra E, 9(X,/S)+a* .

This is minimized by g(-)=—a/(r+1). Therefore from (4.11) a mini-
max invariant predictor is given by

a(X):X,—i-(t 3 1(n——i+1)">S/(r+1) .

Remark 5. This problem can be solved by direct application of
Corollary of Hora and Buehler [7], p. 798.
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