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Introduction

This paper is a continuation of author’s Ph.D. thesis [6] and No-
gami [7].

The set-compound problem simultaneously considers 7 statistical
decision problems each of which is structurally identical to the compo-
nent problem. The loss is taken to be the average of n component
losses.

Let ¢ be Lebesgue measure and f a measurable function with 0=
f=1. Define

a+1
(0.1) a0=1/\" .
Let P*(f) be a family of probability measures determined by
0.2) P f)={P, with p,=q(0)[0, 0+1)f, v 6 € 2}

where p,=dP,/d¢ and 2 is a real interval [¢, d] with —co<c<d< + 0,
and we denote the indicator function of a set A by A itself. The
component problem is the squared-error loss estimation (SELE) of ¢
based on X~ P, € P*(f).

Let X, ---, X, be n independent random variables with each X,~
P, € P*(f). The modified regret of the set-compound decision proce-
dure t=(t, ---,t,) is of form

0.3) DO, =F(n" 3] (0,~t,(X)))~R(G)

where R(G,) is the Bayes risk against the empiric distribution G, of
6., +++, 0, in the component problem.

With squared-error loss, let #; be the procedure whose component
procedures are Bayes against G,: 6, =(01,, - -, 0,,) With, for each j,

* The word ‘“nonregular” was quoted from Ferguson ([3], p. 130).
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(0.4) 01,,=§Z+ 0a(0)G.(0)| S: ¢dG,

where 4’ is an abbreviation of y—1 and the affix + is intended to de-
scribe the integration as over (X/, X;]. Henceforth we delete + in

lower limits of Ss. Then, we can write
RG)=F (1™ 31(0,~0,.)).
i=1

The work here is a generalization and an extension of Fox’s work
[4], respective to a family P*(f) and to the set-compound SELE prob-
lem. When P, is the uniform distribution on [6, §+1) for 6 € (— oo, o)
and the # are i.i.d. with a prior G, Fox [4] showed the convergence
to R(G) of the respective expected risks for a one-stage procedure
with components direct estimates of the posterior means wrt G.

Nogami ([6], Chapters II and III) introduced a one-stage set-com-
pound estimate 8, for @ ¢|c,d]” (we say this fact so that €, has a
rate 1/4) under P*(f) with Lipshitz condition for 1/f. In this paper
we demonstrate (in Section 1) another estimate g* with a rate 1/3
without Lipshitz condition for 1/f and can expect (from Section 2)
that both @, and ¢* have the same best exact order n~%* of conver-
gence of the modified regret. In Section 1 we get an upper bound
for D(@, ¢*). In Nogami [8], there is a misprint in the bound of
Theorem in Section 2. The bound there should be (8N 424)m*{N*.
(Ak—24+ Kk ((n—Ek+1)R¥)"124-27%+1p%}  Although this bound with k=1
gives an upper bound for D(@, ¢*), the result of Section 1 in this
paper is stronger than that. Section 2 gives us lower bounds for
D(0, ¢*) at f=1.

Notations. We often let P(h) or P(h{w)) denote Sh(w)dP(w). G ab-

breviates the empirie distribution G, of 4, --.,8,. For any function
h, h), means h(b)—h(a). When we refer to (a.b) in Section a we
simply write (b). Vv and A denote the supremum and the infimum,
respectively. = denotes the defining property. P, means the condi-
tional expectation of X, ---, X;_,, X, -+, X, given X;=x. A distri-
bution function also represents the corresponding measure. Define z=

n
—:n-l 2 78
i=1

1. An upper bound for the modified regret D(8, ¢*)

In this section we shall get a one-stage procedure ¢* for estimat-
ing @ and show that it has a rate 1/3 under the assumption f(-)=m™.
Assume
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1.1) f(Hzm™ (>0), for a constant m (>1).

Before mentioning about the structure of the procedure ¢* we in-
troduce the following :

LEMMA 1.1 (Nogami [6]). Let ¢ be a signed measure, g be a meas-

urable function and I=(y', y] be an interval with SIgdrqEO. Let 7, be

the signed measure with density Ig / S Igdc wrt r. Then,
S sdr(8)=y— S: (¥, ¥y +tldt .

ProOF. By Fubini’s theorem applied to the lhs of the second
equality below,

y—g sdz,(s)= Sgl

s§—

dtdz,(s)= S: (s ¥ 1t .
.

For fixed 7, 1<j<mn, we abbreviate X, to z. Fix j until (56). Let
Q@ be the measure with the density ¢ wrt G. Define

(1.2) w(y)=pW/fy), 1=1,---,n.
Then, by the definition of p,

(1.3) wWy)=Ql .

Thus,

(1.4) Q)= Uy—7).

By above Lemma 1.1 applied to (0.4)
(15) 0=o—|, QUzrat/Ql:
—o— S: S ki)
In view of (2) we estimate u(y) by ﬁ(y)zn“iéai where for any A>0

(1.6) %)=k ly=X.<y+hl/f(X) .

We allow & to depend on n and assume h<1 for convenience. Thus,
this and (5) (observe a'<6,,<x) suggest that to achieve a small modi-
fied regret we might estimate 4,, by

(1.7 f=a—0v (|, 2 @l=rrdtie)) AL
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and thus @*=(g%, ---, ¢%) is an estimate of 6,X) and thus of 6.
Note that if the r-th term of the numerator of the quotient of rhs(7)
is nonzero, then

(1.8) r<d+3—c=N+2.
Since X.f’<¢;kn’ ﬂjnéXj! j=1! 29 e, M,

(.9 n2! DO, $*)|< 3 PiPel#h—0,l.

We shall invoke the following corollary, a special case of Lemma A.2
of Singh [9], to get a bound of P,|¢%—6,,|.

CorOLLARY 1.1 (Singh [9]). For real random wvariables Y and Z,
and real numbers y and z,

) B %—-g—l/\1>§2]z|“{E|Y—yl+<|%l+1)E]Z—z|}.

Applying Corollary 1.1 and weakening the resulted bound shows
that for fixed j,

1) Plgs—0,l<@@)| 3 (| Plae—r+o-da—r+old

+P.[ila—r)— e —n)[| + 2P, [3(z)~@)]

But with u,i(n—n-i(jé
)

11

— n
u, and #;=(n—1)"" 3 %,,
=1 (®i=1

(1.12) P |Ju(x—r+t)—t(@x—r+t)|—(n—1)P,|u,(x—r+t)—a,(x—r+t)|
Slue—r+t)—(hf(2)|=2m)/h

where the last inequality follows by

(1.13) u(-)sm, vj and 1/f(-)=m.

Lemma 2.2 below will be used to get a bound of iP,(rhs (11))
ji=1

and is proved in the proof of Lemma 2.1 of Nogami [7] with 8 there
replaced by N.

LEMMA 2.2.
(1.14) 31 Py(@(X,)) 'S nN.
j=1

By three applications of (12) and an application of (14), and by
weakening the resulted bound we obtain
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(1.15)  n@N-+6)™ z_; P,(rhs (11))

<(n—1) V. 31 P, (X)) Pal (X, 9) ~ X~ )
+2mNnh™.

Since by the triangular inequality and Holder’s inequality,
(1.16) P.|5,(y)— %) |S|%,(y) — Pty () |+ 0.(y)
where ¢2(y)=variance of 4,(y), to get an upper bound of the first term
of rhs(15) we shall obtain bounds for V e.(y) and V ﬁP,((ﬁrst term
of rhs(16) at X,—y)/u(X;)). ’ =

LEMMA 2.3.

v o (y)Sm((n—1)h)~"2.

ProoOF. By the definition of o?
117 (=D 3 Ph@rse-1 |7 5,6 ede

which is no more than m*n—1)h because of (13).

LEMMA 2.4. For all y=0,

(1.18) 3 Py(,(X,—y) — Pai(X, —w)|fulX,)) S mhm

PROOF. Since Pﬁj(z):h“Sﬁh'T,Lj(t)dt:S:ﬁj(z—}—hs)ds, Ins (18) for
every ¥y=0 equals to

2|\ wgeymds|-piaymez

which is no more than

d+1

ST -1 3 a0) (0 —hs=z—y<0)+10,~hssz—y—1<0])ds
D@z

Thus, interchanging integrations and also averages over respective j
and % leads to

(1.19) lhs(18)§§qw,.)S:S'”‘(wi—hséz—y<oil+wi—hsgz—y—1<a,~]>

-(n— 1)“‘(i§=lp,-(z)/ﬂ(z)dzds .
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Since (n—l)“‘( 5;‘, pi(2)/u(z)< f(2)<1, by a simple computation and q(.)
ix)j=1
=m

rhs (19)<2h 31 (6) S: sds=h 3 q(0)<nhm .

We now go back to (15). By Lemmas 2.4 and 2.3 together with
an application of Lemma 2.2 we obtain in view of (16) that

rhs (15)=mNn**h~"*+(n—1)nhm+2mNnh™" .
Therefore, in view of (9), we finally obtain
THEOREM 1.1. For all 8 € [c, d],
|6, $)*|<2(2N +6){3mN(nh)™'"+mh} .

Remark. In Chapter III of Nogami [6], two one-stage procedures ;
one (denoted by @,) for P*(f) under Lipshitz condition for 1/f and
the other (denoted by @) for P*(1), both with a rate 1/4 are exhibited
as a special case (k=1) of the k-extended problem. (From the struc-
ture of construction ¢ cannot be extended to &P*(f).) In Chapter II
of Nogami [6] Theorem 3 (Theorem 2.1 in Section 2 of this paper)
shows that when #=0 and f=1 (note that in this case 8, and ¢* are
the same estimate for the zero sequence 0), , with A~'n""4=0(1) has
exact order O(h?) of convergence, and Theorems 4 and 5 there give a
lower bound and an upper bound for D(0, ¢) at f=1, respectively. In
this section we assume no Lipshitz condition for 1/f and from above
Theorem 1.1 we can see that for ¢* with a choice of h=n"'* (up to
constants) |D(8, ¢*)|=0(n"*?), uniformly in 8 c¢|ec, d]*. Furthermore,
from Theorem 2.1 in the next section we shall see that for this choice
of h ¢* has the best lower bound n~* for D(0, ¢*) at f=1 and this
shows that D(8, ¢*) converges to zero at a rate no faster than n%4,

2. Lower bounds of the modified regret D(0, ¢*) when f=1

In this section we consider the uniform distribution P=UJ[0, 1)
over the interval [0,1) as the underlined family of distributions.
Lemmas 2.1 through 2.4 will be furnished to prove forthcoming Theo-
rem 2.1 which gives us lower bounds of D(0, *). Theorem 2.2 is a
derivation from Theorem 2.1 and somewhat Section 1 and will be stated
without proof.

Let X, .-+, X, be i.i.d. random variables with the common distri-
bution P=U[0,1). Let X=(X, ---, X,,,). Here we consider ¢*(X)=
(@it =+ o) PFrinrr). Since ¢y, «++, ¢¥1.01 are identically distributed

and since for all j, 0, ,,,=0, abbreviating ¢, .,; to ¢* we see in view
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of (0.3) that the modified regret of ¢* at 6=0 is given by
(2.1) D(0, ¢*)= Pg**

where P=P, X ---XP,,;.
For fixed x=X,,;, ¢* is written as

(2.2) p*=(x'Vo) A

where with 4(y)=(n+1)" nﬁ wi(y),

2.3) o=i— S: S )zt
We shall exhibit an explicit form of ¢ in a.e. P,-sense in the following :
LEMMA 2.1. For every x€[0, 1),
@24 o= B (X -Me<X,Se+hl-h 3 0=X,<a]-h
+§1[0nggx'+h]}/§l[x<ngx+h] ae. P,.

PrROOF. Fix j and note that as a funection of ¢ € [0, 1], i [X,—a'+
r=0

r—h<t<X;—a'+7r] is equal to zero, is equal to its first term, or is
equal to the sum of its first two terms according to whether 1< X,—
' —h, X;—2'—h=1<X;—a' or X;—x'<1. Integrating over t¢e[0,1]
for each case gives

S:g[X,—x'+r——hgt<X,—x'+r]dt
—(@4+h—X,)[z<X,<o+h]+h[X, <] .
Hence, it follows
2.5) (n+1)h) S: (- —nE*at

=1 (@+h—X)[z< X, <z +h]+h 3] [X,<2]
Jj=1 J=1

+

1 S [ —r< X;<a’'—7r+h].
1r=0

n
J

But since [z<z=Zx+h]=0, [z=Z2]=1, i[m’—r<x§x’—r+h]=0 and

a.e. P, i[x’—'r<Xj§x'—r+h]=0, we have

rhs (5) =2 3} [1< X, < +h]— 3} (X,—h) [ < X, <z+h]
j=1 J=1
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+hj§.l [X,éx]+h—jé [¢'<X;<2'+h], a.e. P,.
=1 =1
On the other hand, since [x<x<x+h]=0,
(v + Dh)i(2)= 3} [ < X, Sw+h]
J=

Applying these to the definition of ¢, we get the asserted expression
for ¢.

In this section we need only to deal with ¢ for x<1—#k, where the

term é[Onggx’ +h] (cf. rhs(4)) vanishes. We also recognize that
i=1
for x<1—h, PJe>2]=0. Hence, ¢* has the following simpler form:

Ve for x €[0,1—h)
(2.6) ¢*=
@'Ve)Azx, for ze[1—h,1).
Now, we let
(2.7 J=[pz=x', x<1—h]
and recognize by (1) and the definition of ¢* that
(2.8) D(0, g*) 2 P(¢*J) .

Let 2 denote convergence in distribution. Also, N(c¢, d) denotes
the normal distribution with mean ¢ and variance d. To get lower
bounds for D(0, ¢*) (Theorem 2.1) we use the relation (8) and the fact

that for fixed , h'eJ 3 —271 and S,=(Vako+2-Wnk?)J 2 N(0, 2?).
We then apply a convergence theorem (cf. Loéve [5] 11.4, A()):

(2.9) it U,3U, then imEU!2E U,

where E means expectation, and Theorem A in Appendix. We shall
first prepare Lemmas 2.2, 2.3 and 2.4 to prove the above two conver-
gences in distribution for the proof of forthcoming Theorem 2.1.

Let u=é[onggx], v=j"§ [6<X,<z-+h] and w=j§=lx,[x<xj§x+
h]. We also define
X =(w—hv—zv—h)/(hv) ,
Y =(u—nx)/Ynz(I—2xz)  and
Z=(v—nh)Vnk .

Then, on the set J, ¢ of the form (4) is alternatively written as
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2.10 —hx 4 M2 Va5 n Y
(2.10) O )y "Z 1+ (k) Z

LEMMA 2.2. Given z € (0, 1), if h is a function of n such that nh—
oo and h— 0, then

(Y, 2)5 N, )
where 0 is the zero vector in R! and I is 2X2 identity matrix.

PrROOF. For each z¢€(0,1) we restrict to » such that x<1—h.
Pick ¢ and s arbitrary, and let

V,=n""{s(e(1—2))""([0= X, <] —2) +th [z < X,<z+h]—h)}

for j=1,2, ---,n. Then, it is not hard to see that
i Vj=$Y+tZ.
Jj=1

Since the V; are i.i.d., the characteristic function K of (Y, Z) at a
point (s, t) € R* is given by
(2.11) K(s, t)=(J (L))"

where J is the characteristic function of V=7V,.
Since by XV (6.8) (Feller, [2]), for any complex numbers such that
le|=1 and |B]=1,

la"—g"|=nla—Bl,
2.12) |y —exp <—-;—(s2+t2)> \ gnlJa)—eXp (—2—1n—(s’+t2)> ’ :

By the triangular inequality and by using |1—y—e™?|=0(") as y— 0,

32+t2 1
(2.13) rhs(lZ)én‘J(l)——l—l— B |+O(n ).

Now, from the Taylor development of characteristic functions by
XV (4.14) (Feller, [2]) and from the fact that J(0)=1, J'(0)=P,V =0
and J"”(0)=—P,V?, it follows that

J(1)—1+%P3V2 g%P,lvr*.

Now, we verify that

P.Vi=n"{(s"+t})—tth—2sta(v &z 1—x) "+ VI—z ")V I}



76 YOSHIKO NOGAMI

and
P,|V[=n""{|s(x™'—1)"*—th"*fr+|t(1—h)h ™/ —sx'* (1 — )"k
+|sx (1 — )" 2+ th' APl —x—h)} .
Hence,
0=n7 (8 +t)— P, V?=0(n"'h'?)
and

P.|V[=0(n*h"1%),
Hence, applying the triangular inequality leads to

‘J(l)——l-}— 822+t2 I___O(n_%uz_{_n—a/zh—x/z) .
n

Thus, in view of (13), (12) and (11),

'K(t, s)——eXp(— sz_g_tz ) I :O(h1/2+n-1/2h—1/2_|_n—1) )

To get the conclusion we invoke the continuity theorem (cf. e.g.
Breiman [1], Theorem 11.6).

We shall next prove X-> —27! where -0 means convergence in
probability P, for given .

LEMMA 2.3. Under the same assumption as Lemma 2.2,
X5 -2,

ProoF. For given z € (0,1), we restrict to n such that x<1—h.
Then, X is written as

(2.14) X= <c/ (7%)) oyt

where C=(nh)™ ,é_ U;, where U;=h™(X;—x—h)I; with [;=[2< X,;<x+h].

Since v has the binomial distribution with parameters » and &,

(2.15) Y 51 asnh— o and h—0.
nh

By simple computations,
EU=—L
2

and
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h(1—h)
—

Thus, EC=h"'EU=-27" and Var (C)=(nh?)! Var (U)=(12"'+(1—h)/4)/

Var(U):—liiz-+

(nh). Therefore, by the Chebychev inequality,
(2.16) C5 —2' as nh— oo and h—0.

Applying (16), (15), (14) and Slutsky’s theorem completes the proof
of Lemma 2.3.

Besides the above two lemmas we shall show that P,[¢<2'] vanishes
when nh — o and h— 0.

LEMMA 2.4. Under the same assumption as Lemma 2.2,
Plo<2']—0 for fixed x .

PrROOF. We restrict to » such that x<1—h. Let W,=h[0=<X,<2x]
—(X;—h—o)x<X,<x+h] for j=1,2, ---,n. Then, by the represen-
tation (4) of ¢, [p<2']=[W=—n""h] where W is the average of i.i.d.
W,s. Since P,W,=h(27'h+2'),

(2.17) Plo<a|=P[W—-P,W=(1—2—n"'"—2""h)k] .
But, Var (W)=n-!Var (W1)=hn“{1—(1—x)(2—x)h+ %—m)hz—rw} <

<%>hn“‘. Hence, by the Chebychev inequality and for large n

rhs A7) <730 ' (1—2x—n"'—27"h)?
which tends to zero when nh — o and h— 0.
We are now ready to prove

THEOREM 2.1. (i) If h is a function of n such that nh®— co and
h— 0, then for any %>e>0, there exists N< +oo so that for all n=N

Do, ¢*)><%—e>h2 .
(ii) If h is a function of m such that mh— oo, h—0 and nh*=0(1),
then for any %>e>0, there exists N< +oo so that for all n=N

D0, ¢*)> %_5)71;? .
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PROOF. (i) Since nh®— oo and h— 0 implies nk — oo and k — 0,
we have by Lemmas 2.2, 2.3 and 2.4 that given z ¢ (0, 1),

(2.18) (Y, 2) 3 N, T, x5l pza 5.

Hence, in view of (10) it follows from Slutsky’s theorem that if z ¢

(0, 1), then A™'eJ 2 —27 (see (7) for the definition of J). By a con-
vergence theorem (9), we have

(2.19) lim P.(h~*¢0) 2 10<w<1],
and hence by Fatou’s theorem applied to the lhs below
lim P P,(h~*"J) 2 P (Ihs (19)) 2 -

Thus, by (8) we get that
lim h~D(0, $%) 2.

(i) follows because of the definition of lim inf.

To prove (ii) we first recognize that for this choice of h, (18) still
holds. Let S,={vnho+2"vnh®}J. Then, in view of (10) it follows
from Slutsky’s theorem that if x ¢ (0, 1), then

8.2 N, 2¥) .

Since P.{(nh)p'J}=P,(S,—2 "W nh*J)*=Var (S,), applying Theorem A in
Appendix to the rhs leads to

(2.20) lim P, {(nh)p*J} =2 [0<x<1].
Thus, by Fatou’s lemma applied to the lhs below
lim P P (nh¢’J)ZP (lhs (20))
1 ) _ 1
2| vay=5

Therefore by (8) we get that lim (nk)D(0, ¢)g% and the definition

of liminf leads to (ii).

Theorem 2.1 (i) implies that at any parameter sequence (4, 6,, - - -)
where 6,=0,=-.., ¢* with the choice h==""* has modified regret con-
verging to zero at a rate no faster than n~*%,
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Remark. By usage of the method obtaining Theorem 1.1 and the
result of Theorem 2.1 we can verify the following :

THEOREM 2.2. (i) If h is a function of n such that mh®— oo
and h— 0, then there exists a positive constant b, such that for suffi-
ciently large n,

bR <D(0, g*)<bih* .

(i) If h is a function of m such that mh— oo, h— 0 and nh*=0(1),
then there exists a positive comstant b, such that for sufficiently large n,

br(nh) " = D(0, g*)=by(nh)™" .

From this theorem we can see that if ¢* is defined by (1.7) with
h such that nh®=b, then there exists a positive constant b; so that
for sufficiently large =, b;'n 2 <D(0, g*)<bn~"’. From this fact we
may expect existence of ¢* where D(@, ¢*) is of the best exact order
n~%3, uniformly in @ € 2~.

Appendix

The following theorem (A Fatou theorem for variances) is used in
Section 2.

THEOREM A. If {U,} is a sequence of ramdom wvariables converging
i distribution to a random wvariable U, then

lim Var (U,)=Var (U).

Proor. It suffices to show that for {U,} such that Var(U,)—
finite.

With g,=EU, and ¢:=VarU,, the Chebychev inequality gives
P[|U,—p|<+ 20,]=1/2 while tightness provides a finite b independent
of n for which P [|U,|=<b]>1/2. The nonemptyness of the intersection
of these events shows |u,|<b++ 20, so that {g,)} is bounded.

D

Letting {x,} be a convergent subsequence with limit p., U,—u, —
U—p.. and hence (cf. Loéve [5] 11.4, A(i))

lim Var (U,)=lim E (U, — t)) 2 E (U — p..)) = Var U .
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