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Summary

Generalized canonical correlation matrix is associated with canonical
correlation analysis, multivariate analysis of variance, a large variety
of statistical tests and regression problems. In this paper two methods
of deriving the distribution are given and the exact distribution is given
in an elegant form. The techniques of derivation are applicable to all
versions of the generalized canonical correlation matrices, nonnull dis-
tributions in generalized analysis of variance problems and also they
give rise to a simpler derivation of the distribution of the multiple
correlation coefficient.

1. Introduction

Let (X', Y’) be a 1Xx(p+q) multinormal vector with covariance
matrix 3 where X is px1 and Y is ¢x1 and 3 is (p+9)X(p+4q) and
positive definite. Consider a simple random sample of size N from
this population and let S be the corrected sample sum of products

N N
matrix, that iS, SZ(S”), Sij=Z(xik—5i)(mjk—Ej), ELZZ xik/N Where Xix
k=1 k=1

denotes the kth observation on the ith component. Consider the fol-
lowing partitioning of S and 3.

Sy S 3y 2
S:[ 1 12]’ Z'z[ 11 12}, S,=8,, IL=3
Sy Sy u 2y * : "

where S; and 3, are pXp and S, and JX,, are ¢Xq. It is well-known
that S is Wishart distributed with n=N—1 degrees of freedom and
parameter matrix 3. Let

(1.1) R=8:"28,185"SuS"*

where SY? denotes the square root of S;;. In our discussion the follow-
ing notations will be used. A symmetric positive definite matrix A is
denoted by A>0, 0<A<I implies that A>0 and I—A>0, AY? denotes
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the square root of A when A is positive definite. But in the trans-
formations that are used in the following discussions we need only a
representation of A in the form A=BB’ where B’ is the transpose of
the nonsingular matrix B. In other words A'? need not be symmetric.
Hence AYBAY? will mean that the post-multiplier of B is the trans-
pose of the pre-multiplier of B.

When p=1 the matrix R in (1.1) is a scalar quantity and it is the
square of the multiple correlation coefficient of X on Y and in the
general case when p>1 it denotes the generalized canonical correlation
matrix. Several problems such as multivariate analysis of variance
and canonical correlation analysis are associated with R of (1.1). An
enumeration of such problems may be seen from Khatri [3]. A large
variety of test statistics are associated with tr R, tr R(I—R)™!, (tr R~!)™!
and (tr (/—R)R™Y)"!. A particular case of the distribution of R in (1.1)
is done in Khatri [3] by using a rather lengthy procedure. Using
more or less the same approach an extension of Khatri’s result is
given in Srivastava [7]. In both of these papers the representations
are not elegant and compact. Srivastava’s representation involves
zonal polynomials and dimensions of the representations of certain
symmetric groups. From the following derivations one can see that
the problem is rather a simple one. Two methods of derivations of
the exact density will be given in this article. The exact distribution
of R is easily available through the method of M-transforms introduced
in Mathai [5]. The M-transform or the generalized Mellin transform
of a scalar function f(A4) of the pXp symmetric positive definite matrix
argument A is defined by

(1.2) M,(s)= SM |A[-oDR £ A A

whenever the integral exists, where |A| is the determinant of A and
dA is the differential element da,day---da,day---da,,---da,,, When
p=1, (1.2) corresponds to the Mellin transform in the scalar case but
when p>1 it does not correspond to the Mellin transform in the
multivariable case. An independent theory of functions of matrix
argument and a new definition for hypergeometric function of matrix
argument are developed in Mathai [5]. With the help of the M-trans-
form we will derive the distribution of R in (1.1) and we will also
give an alternate derivation with the help of generalized Laplace
transforms. We start with a simpler derivation of the distribution of
the multiple correlation coefficient.

The square of the multiple correlation is R in (1.1) with p=1.
Let U=1—R. Then since S, in this case is scalar,

(1-3) U=1 '_(SmSz;lSZl)/Sll - (Su - SIZS2_2-IS21)/SII :[S [/ ” Szzlsu} .
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The hth moment of U is available by integrating out over the Wishart
density. That is,

(1.4) E (U= {231 Tpua(nf2)) | (1SUSulSul)?
X |S In/Z-(p+q+1>/ze—(1/2m s-lst
where, for example,
1.5) I'(a)=n** Y[ (a)[(a—1/2)[(¢—1)- - - I'(e—(k—1)/2) .

We may replace S;* and |S,|™ by their equivalent integral representa-
tions, namely,

(1.6) Sit={TW} " a*eswds,  R(>0
and
1.7 |Sul={L ()} SM | A[p=CatDrzgtraSyd 4 | R(h)>(q—1)/2

where R(-) denotes the real part of (-). Under these substitutions
and replacing S/2 by S we have
(1.8) E(UM=A{L(MI(h) 1y (n/2)| 2]}
% g S S xh—llAIh—(q-H)/ZlS|n/2+h—(p+q+l)/2e—tt 454S dA dx
J2>0)4>0)8>0

where

_ 011+x 212 o1 211 212
A‘[ u 2‘22-{—11]’ 21_[221 222]'

Integrating out S we get
(1.9) E (UM =T i(n)24+R){| 22Ty f(n[2) T (R) T y(R)}
X S S xh—lIA|h—(q+l)/2|Al—(n/2+h)dA dx .
z>0)4>0

When the population multiple correlation coefficient
(1.10) 0'=213%'Suloy

is zero then |A| reduces to a simple form and the integrations of =z
and 4 are very simple. We consider the general case when p*>0. In
this case,

(1.11) |A|=B(1+ B 'w)| 4+ 3|

where



38 A. M. MATHAI

(1.12) B=q'— 3 A+ 3%) 15 =gt A+ S5 |/| 4+ 37 .

Collecting the factors containing x and integrating one gets
(1.13) {r'(h)}! S: 2" Y14 Blxg)~ " *Wdg = B '(nf2)['(n[2+h) .
Now collecting factors containing 4 we get

(L1 (@)L} || AP A S A+ S5
>

= (") I [ {Ty(n/2)| T (n]|2+R)}
X Fi(nf2, h; n/2+h; T—3YE3253Y) .
The integral in (1.14) is available by transforming the variable 4 to
U'—1I so that 0<U<I and then the differential element is d4=
|U|"9*’dU. Now one can use Euler’s representation of a ,F}, for ex-
ample, see Herz ([2], (2.12)) or the results in Mathai [5] to evaluate

(1.14). Now substituting back in (1.8) and simplifying the gammas
one gets

(1.15) E(UY={I'(n[2—q/2+ k) (n/2)/T'(n]2—q[2)]'(n/2+h)}
X Fi(nf2, h; mj2+h; T—332323Y,
for R(h)>(g—1)/2.

This is one representation. But from the symmetry of simplifications
in (1.11) to (1.14) we can see that E (U") is also given by

(1.16) E (UM={I'(n/2—q/2+h)['(n/2)/T'(n]2—q/2)]'(n/2+])}
X F(nf2, b ; nj2+h; 1—ay6").

The density of U can be represented in a number of ways. One rep-
resentation is available in terms of a ,F; from the uniqueness proper-
ties of Mellin transforms. Since (1.15) is valid for all complex A such
that R(h)>(q—1)/2, (1.15) uniquely determines the densities of U and
R. The density of R can be directly written down from (1.15) but
for the sake of simplicity we will show it explicitly by using the fol-
lowing known result.

(1.17) S 21— )L Fy(a, B; 7 d)da

={I'(@)'(b)/"(a+b)}sFa, e, B; a+b,7r; J)
for R(a), R(b)>0.

Put a=q/2, b=n/2—q/2+h, a=n/2, f=n/2, r=q/2 then we get

(1.18) S: (1— @)t (1 — )= L (2, n/2 5 q/2; dw)dw
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={I'@/2)I"(n[2—q[2+h)[I'(n/2+R)}
X sFy(n(2, n[2, q[2; n[2+h, q/2; 0)
={I'(@/2)I (n|2—q/2+h)[T(n|2+R)}(1—3)™"
X Fy(h, 025 mj24h; 8/(6—1)).

The last step is done with the help of the known formula
(1.19) Fi(a, b5 ¢; 2)=(1—2)"F(c—a,b; c; z/(z—1)).
Comparing (1.18) with (1.16) for d=p* we get the density of R as,

(1.20) f(R)={A—p)"I'(n/2)/I'(n/2—q[2)I(q/2)}
XRV(1—Ry L E(n/2, nf2; q/2; o°'R), 0=R=1

where R is the square of the multiple correlation coefficient of X on
Y when X is scalar. It may be noticed that this method of derivation
is easier than the other methods available in the literature, see for
example Kshirsagar ([4], pp. 94-99), Anderson ([1], pp. 93-96).

One advantage of proceeding as above is that all the steps that
we have used in the derivation of (1.20) are directly extensible fo
matrix cases. In the general case when p>1 we have

(1.21) R=S1I1/2S12S2;1Sﬂl/2 and P=Zﬁl/22122{212212,}1/2
where P is the population matrix corresponding to E. Let
U=|I—‘Rl=Isn—SlezEISmWSul:IS1/{lsu|iszzl} .

From (1.2) it is seen that the M-transform of the density of R is
E (U with h=s—(p+1)/2. Following the same steps as in (1.3) to
(1.8) we get

(1.22)  E(U")=Tp(n)24M) {0 (n[2)| 21T, (R)(h)}
% S S | 4, 1= @HOR| fy[pa+ D] A |=r2emg A d A,
430 4,>0

where

A [ Sty A, 312 }
- 21 22 *
) 224+ 4,

Now proceeding as in (1.11) to (1.20) we get for g=p,

(1.23)  E(U"={I)(n/2—q[2+Rh)(n/2)/T'(n/2—q[2)](n/2+h)}
X Fi(nf2, b ; m[2+h ; [—ZE3M3E)

and

(1.24)  F(R)={/I—P"*I(n/2)|T(n|2—q/2)] (q/2)}| R|v*- ¥+
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X|I— Rt F(nf2, nj2 ; q/2; PVRPY),
0<R<I, 0<P<I.

In Mathai [5] the uniqueness of f(A) from M(s) of (1.2) is not estab-
lished. Hence as it stands we have one function in (1.24) for which
the M-transform is (1.23). In the next section we will show that f(R)
in (1.24) is in fact the unique density of R. This will be established
with the help of the uniqueness of the Laplace and inverse Laplace
transforms in the case of functions of matrix argument. This also
gives another method of deriving the density of R. This method is
more lengthy but it involves several interesting steps which are also
applicable in other problems. It is not difficult to see that all the in-
tegrations and interchanges carried out in the following section are
valid. Hence we won’t list the conditions at each step.

2. Derivation of the density through Laplace transforms

The Laplace transform of the density of R in (1.1), denoted by
Lz(B), is the expected value of ¢ * 2% that is,

2.1) Li(B)=E (¢e"*2%), R=S8:"8,,S5'S, S

where the variables are the distinct elements of R and B is a sym-
metric complex matrix with diagonal elements b,; and nondiagonal ele-
ments b;;/2, 1#J, b;;=b,;. A discussion of the uniqueness of the inverse
Laplace transform may be seen from Herz ([2], pp. 478-480). Since R
is a function of S and S is Wishart distributed we get Lx(B) by inte-
grating out over the Wishart density. That is,

(2-2) LR(B) — {qu(n/z)lzlnﬂ} -1 g et BRIS In/2—(p+q+1)/ze—cr ):"1st

§>0

where S/2 is replaced by S for convenience. But
(2.3) IS |=1Sel[SullT —Si"*S1:8%"'SuS1"*| .

Make the transformations S;2S, = Uy, S;¥*U,=V,, then dSy=|Sy["*d Uy,
dU,=|Sy|"*dVy, for fixed S, and S, and R=V,,V,. Under these trans-
formations the Laplace transform becomes

(2-4) LR(B): {rp+q(n/2)|2|n/2} -1
XS S S Sy /2= @+ S, 2= DIR| [ 7, Wy = et 122
8119832V 12 ® rra

Xexp{—tr BV, Vy—tr I3!S, —tr S}2312SY2V,
- tr S;{22213111/2 Iflz - tr 222S22} dSn ngz d Vlg .

Let g=p. Consider the class of ¢xp matrices of the type V,. Let



CANONICAL CORRELATION MATRIX 41

Z=V,Vy>0. Then we have a unique representation of the form V,
=WyZ"* where W, is an element of the Stieffel manifold, that is,
WiuWy=I. Then dVyu=27?|Z|*~*2dW,dZ (see for example Herz
(21, p. 482)). Also

(25) La(B)= (231" L, (nf2)) |

|Zlq/2—(p+1)/26—(.r BZ |I_ZIn/2—(p+q+l)/2
I>Z>0

XS S S Isuln/z-(p+1>/2|Szzln/2-<q+1)/z
S117 892 Wy

X exp {—tr ZUS,—tr ISy, —2 tr ZVS Y25 S W)
X dSydSud WydZ .

Now consider the integration of W,. From Herz ([2], p. 494 (3.5))
we have

(2.6) S et TGV =20t A(—T'T),  d=(q—p—1)/2
vV'v=I
where the Bessel function is given by the following representation :

2.7) A,,(M):(zni)—wmg e TgmeMXT X ma2d X | j=(—1),
X

Hence
(2.8) SW exp {—2 tr ZVIS}ESUSY Wy} d Wy
21
— 2p7rpq/2(27r,i)—p(p+l)/2 S ebr U+tr MU"II Ul—q/2d U
U
where

M — Z1/2S111/2212S22221S111/2Z1/2 .

Now collecting the factors containing S,, we get

(2.9) S | Syp 2@/ exp { —tr SESytr SpSUSHZ AU S T d Sy,
>0

22

= Fq(nlg) I S yuSy 7 U—lZl/2Slll/2212|—n/2 .

The factors containing U can be integrated out directly or one can use
the following known property to write down the result.

(2.10)  AM)={I(q/2)} "WFi(e/2; —M), o=(¢—p—1)/2.

If direct integration is used then one may need the property

22 21 Q1/2 771/2
(2.11) Zl/élllﬂzlz ) S;JZ —|U|| 3% — 3482 Z 2 U~ ZAS 25"

— l 2‘221 l UI I I — U-—lZ 1/2S111/22‘12(z‘22)—1221S11{2Z1/2l
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and the inverse Laplace representation for F), see for example Herz
([2], p. 487). Now

(2.12) IM=(3— 335 2 =23 (I - P)' I
where
P=33"3,55' 5,85 .
Put
(I —P) 23 A8, S (I —P) =X
then
dS,=|2y|?PA| I — P|**P2d X
and writing
(I—P) 358 }= X"
we have
ZVISY S I SUS P 7 = Z SIS V(T — P) T P AS AV
=ZV( XY PX'PZ\E

This can always be put in the form YY:PY:Z(P'Y)'(YY?) since Z, P, X
are all symmetric and positive definite. The differential element does
not change and also tr X=trY. This can be seen by substituting the
symmetric square roots and then using the property that tr ABC=
tr ACB when A, B, C are square symmetric matrices of the same
order. Now collecting the factors containing S, one gets

(2.13) S | Sy /2w +/2gur g,
51,0
X Fi(n2; q/2; ZVSYSHI®) 1 SUSYZ10dS,,
':|2‘11|"/2[I—Pl"/2 S ]Yl"/z"(p+l)/2e—nry
¥>0

X, Fi(nf2; q/2; YVPVZ(PRY(Y))dY
=| 32| I — P Tn[2).Fy(n2, n/2 ; q/2; PV:ZP"Y),
0<Z<I.

The second integral in (2.13) is available from standard results, see for
example, Herz ([2], (2.1)"). Collecting the constants we have

(2.14) {2PnP9 T (m2)T(m[2)| 372 3y || [ — P} |
(L1 o(nf2)| 217271 (q/2)}
=1 =P Iyn/2)[{T}(n/2—q/2)I(q/2) -
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The simplification is done by using the facts that
(2.15) | Z|=]Zy||2®2|t and Ty (n/2)][(n[2)==""*T(n[2—q/2).
Thus we have
(2.16) Lg(B)=|I—P"* I(n[2){I}(n]2—q/2)](q/2)}
% S gt BZ| Z |0/t~ w4 DR | [ _ Z [p/i=tat D)2
I>Z>0
X Fi(n/2, n/2; q/2; PVZPY)dZ .

From the uniqueness of the inverse Laplace transform it follows that
the density of R is uniquely determined by

(2.17)  f(R)=T(n/2)|I—P["*{I'(q/2)](n/2—q/2)} "

X |qu/z—(p+1)/2II___RIn/z—(p+q+1)/z
X, F(n/2, n/2; q/2; PVRPY), 0<R<I, 0<P<I.

The distributions in other cases can be written from the symmetry of
the partitioning of S and ¥, with interchanges of rows and columns if
necessary.
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