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Summary

Normalizing transformations of the largest and the smallest latent
roots of a sample covariance matrix in a normal sample are obtained,
when the corresponding population roots are simple. Using our results,
confidence intervals for population roots may easily be constructed.
Some numerical comparisons of the resulting approximations are made
in a bivariate case, based on exact values of the probability integral
of latent roots.

1. Introduction

Distributions of latent roots of a sample covariance matrix in a
normal sample have been studied by many authors. Some works have
been done on the derivation of asymptotic distributions, and others on
that of exact distributions. A survey of the area of asymptotic dis-
tributions is found in Muirhead [8] and Siotani [10], [11], and that of
the area of exact distributions in Krishnaiah [6].

From a practical point of view, it is desirable to obtain simple and
accurate approximations to the distributions of latent roots which it may
be possible to get the confidence intervals for the population roots. It
is well known that a limiting normal approximation to the distribution
of a sample correlation coefficient in a normal sample can remarkably
be improved by Fisher’s z-transformation in the tail areas of the dis-
tribution curve. So normalizing transformations of some variates ap-
pear to be interesting on the grounds of simplicity and accuracy. A
theoretical approach for Fisher’s z-transformation was made by Konishi
[5].

The purpose of this paper is to investigate transformations of this
sort for the largest and the smallest latent roots of the sample covariance
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matrix, when the corresponding population roots are simple. Using
our results, confidence intervals and percentile points can easily be ob-
tained. In view of principal component analysis, it is of interest to
construct a confidence interval for the largest population root and to
test the hypothesis that the smallest population root is equal to a small
positive value. Accuracies of approximations to be suggested here are
checked in a bivariate case, based on exact values of the probability
integrals of latent roots.

2. Normalizing transformations of latent roots

Let I, l,,---, 1, be the latent roots with the descending order [,>l,
>..+>1,>0 of the sample covariance matrix S based on a sample of
size N=n+1 from a p-variate normal distribution with population co-
variance matrix X, and let A, A,-+, 4, (4=::-=2,>0) be the latent
roots of Y. In order to find simple and accurate approximations to the
distributions of I, and I, in the tail areas of the distribution curves,
we use the following lemma.

LEMMA. Let f(l,) be an analytic function in a meighborhood of I,
=1,. Assume that 2, is simple root and that f'(2,)#0. Then an asymp-
totic expansion for the distribution of f(l.) s, meglecting the term of
order 1/n, given by

@.1) Pr [ v {fl)—f(A)} <x]

V2.1
_ 1 A 2 (2 " 17 V-1 2
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where ¢(x) is the first derivative of the standard mormal distribution
Sfunction ®(x) and f'(1.), f"(4.) are the derivatives of f(l.) at l.=2..

This is straightforward from Theorem 2.1 in Konishi [4]. From
Lemma it follows that the limiting distribution of

2.2) v (l.—2)V 22,

is normal with mean 0 and variance 1. Although (2.2) does not contain
the latent roots other than 2., this approximation is poor on the whole
domain of [,.

In approximating the values of the probability integral Pr (I.<l)
by using (2.1), the function f is restricted to strictly monotone func-
tion in (0, +o0) and the value of x is taken as z=+n {f(l)—Sf(A.)}/
{¥'2 2,.f'(2,)}. Hence the absolute value of x is zero at l[,=21, and be-
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comes larger as [, moves away from 1,. This implies that the absolute
value of x is fairly large in the tail areas. In considering a transfor-

mation of the largest latent root I;, the value of Zp‘, /(21— 2;) in (2.1)
p=2

is always positive. In order to improve the normal approximation (2.2)
to the distribution of I, in the tail areas, it seems reasonable to find a
function which reduces the coefficient of 2? in the term of order 1/yn
in (2.1) to zero, that is,

§+zlf"(xl)f'(zl)-‘=0 :

Solving this differential equation and choosing a constant suitably leads
to f(l)=U". It follows from (2.1) that the limiting distribution of

(23) va e (L)

is normal with mean 0 and variance 1. An approximate confidence
interval for 2, is easily constructed in the following:

1 /2 \® 1 /2
l1/<1+'§\/;za/2> <21<ll/<1_‘3_\/%zn/2> ’

where z,, denotes the upper 50a percentile point of the standard nor-
mal distribution.

We now consider a transformation for the smallest latent root [,,
based on the asymptotic formula (2.1). In the case of I,, the value of

-1
pz As/(2,—2;) in (2.1) is always negative and is, in many practical situ-
B=1

ations, smaller than —p. Hence we first search for a function such
that

—p= 24 {240, ) () a=0

for a fixed number z’=a. A solution of this differential equation may
be found to be
(2.4) F,) =l

To obtain an accurate approximation in the tail areas, we set a=a’=
(20)’=4 in (2.4), which yields I[$***, From (2.1), the limiting distribu-
tion of

(2_5) ,‘/%{l;pﬂ)ﬂ_'z;pﬂ)/d}/{ */—z—(f"‘ 2) 2;p+z)/4}

is normal with mean 0 and variance 1. It is easy from (2.5) to obtain
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the lower 100a percentile point for I, and to construct a confidence in-
terval for 2,.
For the ath largest latent root I, (@1, p), we can not know whether

the value of ﬁ 2:/(2,—2,) is positive or negative. So it is difficult to
B#a

find a transformation which improves the normal approximation (2.2).
Girshick [3] suggested an asymptotic variance stabilizing transformation
(1/42)1logl,, which may be obtained by solving the differential equa-
tion ¥ 2 1,f'(2,)=1 in (2.1). The limiting distribution of

(2.6) «/n<1/2 log l,— 7 logx)

is normal with mean 0 and variance 1. This approximation is however
not accurate, as we may see later. An asymptotic expansion for the
distribution of I, has been individually obtained by Anderson [1], Muir-
head and Chikuse [9] and Sugiura [12]. A confidence interval for 2,
based on an asymptotic expansion formula has been considered by Fuji-
koshi [2]. The result is however of intractable form in a practical ap-
plication.

3. Numerical comparisons

In the case of p=2, some numerical comparisons of approximate
distributions discussed in Section 2 are made in Tables 8.1 and 3.2,
based on exact values of the probability integral Pr (I.<l,).

Sugiyama [13], [14] has derived the exact distribution function of
I, in a form involving a hypergeometric function of matrix argument.
A hypergeometric function can be represented as power series in terms
of zonal polynomials. We calculate exact values of Pr(l,<l;), using
tables for zonal polynomials of order two given by Sugiyama [15]. In
the case p=2 Muirhead [7] has presented various expressions for the
distributions of I,, which do not contain zonal polynomials.

It can be seen from (2.5) that in the case where p=2, I, need not
be transformed, and so an accuracy of the limiting normal distribution
for [, is checked in Table 3.2. In the accompanying tables, the nota-
tions L,, L® and log L, (a=1, 2) stand for the cases that the values of
Pr(l.<l,) are approximated by (2.2), (2.3) and (2.6), respectively, and
AL, the case that the values of Pr(l,<l,) are approximated by using
the asymptotic expansion formula of Sugiura [12].

Table 3.1 shows that the normal approximation (2.2) based on the
limiting distribution of I, can remarkably be improved by the transfor-
mation [}”® in the tail areas, especially in the upper tail area. For some
values of population roots L!* is more accurate than AL,. The asymp-
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Table 3.1. Comparison of exact and approximate values of
Pr(l1<lo) for N=21
Lo exact L3 L, AL, log Ly
21=2.0, 2;=1.0
3.2 .9465 .9462 L9711 .9466 .9314
3.3 .9582 .9575 .9800 .9574 .9433
3.4 .9675 .9667 .9865 .9661 .9533
3.5 L9749 .9741 L9911 L9732 .9616
3.6 .9807 .9799 .9942 .9789 .9684
3.7 .9853 .9845 .9964 .9837 .9741
2:1=3.0, 2:=1.0
4.7 .9430 .9371 .9634 9432 .9221
4.9 .9588 .9540 9774 .9582 .9396
5.1 .9706 .9667 .9865 .9693 .9533
5.3 L9792 .9762 .9923 .9776 .9640
5.5 .9854 .9831 .9958 .9839 .9723
5.7 .9899 .9881 .9977 .9887 .9788
21=4.0, 2;=1.0
2.1 .0334 .0333 .0665 .0353 .0207
2.2 .0440 .0432 .0773 .0463 .0293
2.3 .0566 .0550 .0894 .0592 .0400
6.5 .9586 .9522 .9759 .9581 .9376
6.7 .9678 .9624 .9836 .9668 .9485
6.9 .9751 .9706 .9890 .9738 .9576
7.1 .9808 L9772 .9928 L9794 .9652
7.3 .9853 .9824 .9954 .9839 .9714

Table 3.2. Comparison of exact and approximate values of

Pr(ls<l;) for N=42

l exact L, AL, log L,
21=3.0, 2.=1.0
0.60 .0295 .0350 .0303 .0103
0.65 .0574 .0565 .0583 .0255
1.35 .9538 .9434 .9539 .9128
1.40 .9691 .9649 .9693 .9361
1.45 .9797 .9792 .9798 .9537
A21=4.0, 2;=1.0
0.60 .0285 .0350 .0293 .0103
0.65 .0557 .0565 .0566 .0255
1.40 .9670 .9649 .9674 .9361
1.45 .9782 .9792 .9784 .9537
1.50 .9858 .9882 .9858 .9668
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totic variance stabilizing transformation log L, leads to a less accurate
approximation. It may be seen from these tables that AL, provides
high accuracy in both tails. We note however that AL, is cumber-
some to use in a practical situation.

Remark. It must be remarked that all approximations for I, dis-
cussed here become extremely less accurate, provided that the ratios
of the population root 2, to the adjacent roots 4,,;, 4._; near the unity.
Table 3.3 compares the maximum error between exact and approximate
distributions in the case p=2:

Error=Max |Pr (I,<ly; n, 4, A)—A(l)| X 10°

where A(l,) is obtained by using an asymptotic expansion for the dis-
tribution of I, due to Sugiura [12] and exact values are calculated to
five decimal places at intervals of 0.1 between 1 and 99 percentile points
for n=20, 40, 100 and 2,=1.5, 2.0, 3.0, 4.0 (2,=1.0).

Table 3.3. Comparison of the maximum errors

A1 A2 n=20 n=40 n=100
1.5 1.0 1901 1546 599
2.0 1.0 1399 525 88
3.0 1.0 489 129 28
4.0 1.0 288 86 —

THE INSTITUTE OF STATISTICAL MATHEMATICS
CHUO UNIVERSITY

REFERENCES

[1] Anderson, G. A. (1965). An asymptotic expansion for the distribution of the latent
roots of the estimated covariance matrix, Ann. Math. Statist., 36, 1153-1173.

[2] Fujikoshi, Y. (1978). Asymptotic expansions for the distributions of some functions
of the latent roots of matrices in three situations, J. Multivariate Anal., 8, 63-72.

[3] Girshick, M. A. (1939). On the sampling theory of roots of determinantal equations,
Ann. Math. Statist., 10, 203-224.

[4] Konishi, S. (1977). Asymptotic expansion for the distribution of a function of latent
roots of the covariance matrix, Ann. Inst. Statist. Math., 29, A, 389-396.

[5] Konishi, S. (1978). An approximation to the distribution of the sample correlation
coefficient, Biometrika, 65, 654-656.

[6] Krishnaiah, P. R. (1978). Some recent developments on real multivariate distributions,
Developments in Statistics, Vol. 1 (ed. P. R. Krishnaiah), Academic Press, New York,
135-169.

[7] Muirhead, R. J. (1975). Expressions for some hypergeometric functions of matrix
argument with applications, J. Multivariate Anal., 5, 283-293.

[8] Muirhead, R. J. (1978). Latent roots and matrix variates: A review of some asymp-
totic results, Ann. Statist., 6, 5-33.

[9]1 Muirhead, R. J. and Chikuse, Y. (1975). Asymptotic expansions for the joint and mar-



[10]

[11]

[12]
[13]
[14]

[15]

IMPROVED APPROXIMATIONS TO DISTRIBUTIONS 33

ginal distributions of the latent roots of the covariance matrix, Ann. Statist., 3, 1011-
1017.

Siotani, M. (1975). Recent development in asymptotic expansions for the nonnull
distributions of the multivariate test statistics, Tech. Rep. No. 32, Dept. of Statist.,
Kansas State Univ.

Siotani, M. (1976). Recent development in asymptotic expansions for the nonnull
distributions of the multivariate test statistics—II, Research Paper No. 322, Dept. Math.
and Statist., Univ. of Calgary.

Sugiura, N. (1973). Derivatives of the characteristic root of a symmetric or a Hermitian
matrix with two applications in multivariate analysis, Commun. Statist., 1, 393-417.
Sugiyama, T. (1967). On the distribution of the largest latent root of the covariance
matrix, Ann. Math. Statist., 38, 1148-1151.

Sugiyama, T. (1972). Approximation for the distribution of the largest latent root of
a Wishart matrix, Aust. J. Statist., 14, 17-24.

Sugiyama, T. (1979). Coefficients of Zonal Polynomials of Order Two, Computer Sci-
ence Monographs, No. 12, Inst. Statist. Math., Tokyo.



