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Summary

In this paper we investigate the effect of estimating the center of
symmetry on a Cramér-von Mises type statistic for testing the sym-
metry of a distribution function. The test statistic is defined by

nTiF)=n " {F@)+F.@SIF]—5)—1}dF,@),

where F, is the empirical distribution function and S[F,] is an esti-
mator of the center of F which is consistent with the order n'* and
has von Mises derivative. The asymptotic distribution of nT[F,] un-
der the null hypothesis is obtained. The distribution depends on the
distribution F' and on the estimator S[F,].

1. Introduction

Let X;, X;,-++, X,, -+ be a sequence of i.i.d. random variables de-
fined on a single probability space (2, B, P) with a continuous distri-
bution function F. F, denotes the empirical distribution function of
the variables X;, X;, -+, X,. There are many statistics for testing the
null hypothesis (H;) that F' is symmetric about a specified value. For
example we may mention a (weighted) sign test statistic and a Cramér-
von Mises type statistic for testing symmetry. The latter is investi-
gated by Filippova [1] (Example 9) and Rothman and Woodroofe [5].

Now we consider a problem of testing the null hypothesis (H) that
F is symmetric about an unknown center. Since it is very rare in
practice that one knows the center of symmetry, we can say that the
hypothesis H is more practical than the hypothesis H,. Under the
hypothesis H we must estimate the center of F using some estimator.
The problem of finding the best estimator is very difficult because we
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do not know the distribution shape of F. But at any rate we can use
any estimator satisfying the assumption (A2) in Section 2, for example
Huber’s M-estimator and L-estimator. Then the statistic nT,[F,] de-
fined in (1.1) below can be regarded as a test statistic of the hypoth-
esis H,

@) afiFl=n | (F@+FESIFl-0)-1VdF@) ,

where S[F,] is an estimator of the center of F. The statistic is a
Cramér-von Mises type statistic for testing symmetry with the center
estimated. It is very important, I think, for practical purposes inves-
tigating its distribution.

In Section 2 we give the asymptotic distribution of nT[F,] under
the null hypothesis H. Let nT[F,] be defined by

12 aTlFl=n|_(F@)+F,ESIF]-2)-1/dF@)

which is replaced the measure F, of the integral of nT\[F,] by F. In
Theorem 1, nT[F,] and nT[F,] are shown to be asymptotically equiv-
alent. In Theorem 2 we investigate the asymptotic distribution of
nT[F,]. The asymptotic distribution depends on the distribution F' and
the estimator S. After all we arrive at the conclusion that estimating
the unknown center has a very severe effect on the asymptotic distri-
bution of the Cramér-von Mises type statistic for testing symmetry.

2. Results

In this section we study the asymptotic distribution of nT\[F,] un-
der the null hypothesis H. Suppose that X, X,,..., X,,--- is a sequence
of i.i.d. random variables with a continuous distribution function F.
Let m be the median of F. In order to state assumptions on F and
S, we need two definitions. Suppose a real valued functional R is de-
fined on a set g; of real functions of a real argument.

DEFINITION 1. The functional R is called m times differentiable
at the point V€ g, with respect to the set rco, which is assumed to
be star-shaped at the point V if the following conditions are satisfied :

(1) For any t¢[0,1], p=1,2,---, m, and any function Wer

P RA—t)V+tW]
dt?

exists.
(2) There exist functions R?[V: y,,---,9,] of p arguments, p=
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1,-.., m, which depend on V, such that for any function Wer, the
relation

ﬁR[(l—t)V—H,W]‘
dt? t=0

B f 0T,
p=1,---,m,

holds.

DEFINITION 2 (Filippova). The functional R is called a Mises func-
tional of order m at the point F' (F' is a distribution function) if the
following conditions are satisfied :

(1) There exists a star-shaped set r,Coy at the point F' such that

limP {F,e}=1.
(2) The functional R is m times differentiable at the point F' with
respect to the set 7x.
(3) For any >0, >0 and p=1,---, m, it holds that

lim P {n"””"’ sup I—diR[(l—t)F-i-tFﬂ]
ost=1| dt?

n-—>c0

>s}:0.

ASSUMPTIONS

(A1) F is three times differentiable except for a set of Lebesgue
measure zero.

(A2) S[F,] is a consistent estimator of m with the order »'* and
is a Mises functional of order 3 at F.

THEOREM 1. If Assumptions (Al) and (A2) are satisfied,
@1) | n{Fu@)+ F@SIF.] )~ 1Vd[F(x) ~ (&)

converges to zero in probability as n— oo under the null hypothesis H.
Before the proof of Theorem 1 we state two lemmas.

LEMMA 1 (Pyke and Shorack [4]). There exists a sequence of ran-
dom processes {I(t): 0=<t<1}, n=1 which have the same distributions
as empirical distribution functions of independent random variables with
uniform distribution on [0, 1] and there exists a Brownian bridge {B(t):
0=t=<1} such that {I,(t): 0<t<1}, n=1 and {B(t): 0<t<1} are defined
on a single probability space and they satisfy the following relation
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sup |[n*((t)—t)—B(t)|—0 almost surely as n— oo .
t

We define h,(x) and h(z) by
bo(2)=n{TW(F(x))+ [(F@2S[[(F)]—x)—1}*,

h(z)= B () + HE@m—2))
+2f(@m—z) || SOLF: F-(5)1da(s)

2
’

where f is the derivative of F' and S®[F": -] is the real valued function
of a real argument which exists from the assumption (A2) (see Defini-
tion 1 and Definition 2).

LEmMMA 2. If Assumptions (Al) and (A2) are satisfied,
sgp]hn(x)—h(x)l—»O in probability as n— oo
under the null hypothesis H.
ProOOF. Note that

he(@) =0 {T(F (%)) — (@) + T (F2S[T(F)] — %)) — F(2S[TW(F)] —z)
+F@S[T(F)]—z)—F(2m—1)}*.

Then we have

sup | k(@) —h(z)|

< (sup [T (F (@) ~ F(@)) ~ BF (@)
+sup [ (L(F(@SIT.(F)]— ) — FESITy(F)] 1))

—B(F@2S[IW(F)]—x))|
+sup [B(F(2S[T(F)]— %)) —B(F(2m—z))|

+sup |nV(F@S[I(F)]—2)—F(2m—xz))
—2f(@m—z) S: SO[F: F-Y(s)dB(s) | )
X (SI}D (Bn()) 2+ (R(2))'D) .

By Lemma 1 we can see the first and the second terms of the right-
hand side converge to zero almost surely. The fourth term converges
to zero in probability by the property of Mises functional S. Further-
more it holds that

sup (ha(®))"+ (1)) ) =0,(1) .



CRAMER-VON MISES TYPE STATISTIC 5

Consequently we have the result of Lemma 2 if the third term is
shown to converge to zero in probability. But it is shown by the
theorem of Lévy on the sample path of Brownian motion (see Lévy [3]
or Hida [2]), i.e. for any constant ¢>1 and for almost all &€ £2, there
exists 0=0(w)>0 and if |[t—t'|<d then

|8t 0)—A(t, w)|<c{2]t—t'| log (1]t —t)}"*

holds.
For any >0, we will determine d>0 as

Plo; dw)>d}z1—9/2.

Since S[F,] converges to m in probability, F is differentiable and the
derivative f is bounded, there exists an integer n, and

P {sup |F2S[I(F)]—x)—F(2m—z)|<d} =1—7/2 for all n=n,.
By Lévy’s theorem it holds that
P {sup |B(F'(2S[I(F)]—%))—A(F (@2m— )|

<c{2u|S[IW(F)]—m|log (1/(u|2(S[TW(F)]—m))}"}
=1—y for all n=n,, where g=sup f(%).

Since S[I(F)]—m converges to zero in probability,
2p|S[T(F)]—m|log (1/(u|2S[I(F)]—m))
also converges to zero in probability. Then we have
sup | J(F(2S[T(F)]—2))—B(F(2m—x))|—0

in probability as n—co .

ProOOF OF THEOREM 1. (2.1) is equal to
[, - e)dIr )~
We set h(F~Y(t))=g.(t) and h(F(t))=g(t).
For any function ¢(t) on [0, 1] and for any positive integer k, we

define a step function (¢).(t)=¢(i/k) on [(¢—1)/k, i/k), i=1,---,k. Then
we can easily see the following inequality.

[, a1z
=], 0.0~ @) 0Mr.0| + || @O —@e)dt



6 SIGEO AKI

+ |1, Garro-1| -

The first term of the right-hand side is estimated as

||, @t)- @0, o)
<sup lgn(t)—g(t)|+s13p lg(t)—(g)k(t)l+sgp 1(9)e(t) —(ga)x(D)]
=2sup |ga(t) —g(t)l+s1tlp lg(t)—(9)(®)] -

Similarly the second term is estimated as
1
) So (gn(t)—(gn)k(t))dt‘ =2 sup |g.(t) — ()| +sup [g(t) — (9):(2)] -

Note that S” AT () — ] =(T(b) —b) — (T'u(a) —a1).

Then we have

[, @warre 1|
=2k sup |g.(t)| sup | I(¢) |

§2k(s13p Ign(t)—g(t)l+s13p lg(®)]) sup [(@t)—t| ,
where sup [g(t)|=sup |h(z)|=0,(1).

Fix k sufficiently large so that sup|g(t)—g.(t)| is sufficiently small.
t

And let n go to infinity.
Then (2.2) and (2.3) hold:

(2.2) sup|g.(t)—g(t)|—0 in probability as n— oo (by Lemma 2).

(2.3) sup|I(t)—t|]—0 almost surely as n— o
(by the Glivenko-Cantelli theorem).

Therefore we have the desired result.

THEOREM 2. If Assumptions (Al) and (A2) are satisfied, the asymp-
totic distribution of (1.2) under the hypothesis H 1is represented by the
Sollowing double stochastic integral of a Brownian bridge,

(2.4) S: S: OLF: F-\(u), F-\(0)|dBu)df(v) ,  where

@5)  9F: 0, A=2 | femoWtnn(DIF@)
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oo

+2 (" e o en@AF (@)

+2SP[F: ] S F @) {H-em-s@) A=, (D)} A F ()
+28V[F: 2] S: F @) {H oo m-a1(Y) F A =0, 2(¥)} A F ()
w4l (em-eyar@|sowE: psow 2,

1 (2.5) x4(+) denotes the indicator function of A.

Remark. In the first and the second term of the right-hand side
of (2.5) we use the change of variables y=F"'(u) and z=F"'(v). Then
we can see

2" teon o@D AF @)

7 et e @IF @)
{ 2{1—max (u, v)} if ut+v>1
B 2{2—max (u, v)—u—7v} if u+ov<1.

The double stochastic integral of this kernel represents the asymptotic
distribution of the test statistic when the center is known (see Filippova
[1]). Consequently the other part of the right-hand side of (2.5) is ad-
ded by estimating the center. And we can see that this part depends
on the distribution F' and the estimator S.

We can easily prove Theorem 2 by using the following Proposition
1 and Proposition 2.
We define

T(F)=|"_|F@)-F@)+F@n—n-Fen—)
+2f(2m—1x) Sw SO[F': uld[F.(u)— F(u)] 2dF(oc) .
ProPOSITION 1. If Assumptions (Al) and (A2) are satisfied, nT[F}]
and nT[F,] are asymptotically equivalent, i.e.
wW(T[F,]—T[F,])—0 in probability as n— oo .

ProOPOSITION 2. If Assumptions (A1) and (A2) are satisfied, it holds
that

o0

TF1={"_|" olF:y, 2)dF,@) - F)MIF.&)~F ) -
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PrROOF OF PROPOSITION 1. We set F®=(1—t)F+tF, for all te
[0,1]. In this case
T[F®]= Sw {1=0)F(x)+tF(x)+(1—t)F2S[F®]—x)
+EF(S[FP]—2)—1}dF(x)
is not differentiable with respect to t.
Therefore we define
T[F*]= Sm {A-O)F (x)+tF,(x)+(1—-t)F(2S[F®]—x)
+18,(2S[F ] —x)—1}dF(x) ,
which is differentiable with respect to ¢, where s,(x) is the following

random function defined for every we 2 by

S” exp [1/{(t— Xeo-+ 1) (u— X)) |du

X(iy~1/n3

i+1
", Sm) , exD [1/{(u— Xep+1/n%) (u— X} 1

X(p)=1/n

s (%)=
(if Xp—1n'=r=Xs, 1=1,2,--,n)

F.(x) (otherwise) .

In the above formula X, <---<X,, denote the order statistics of X,
«++, X,. We define A,(x,t) by

Ay(x, )=1—t)F(x)+tFu(x)+(1—)F2S[F]—2)—1.

Then it holds that for any real x, for any t¢[0,1], and for any in-
teger n,

(2.6) |Aa(2, t)|<s2 .

And we have by the definition of T\ [F], Schwarz’s inequality, and
(2.6),

| TIF®]— T(FP)|
<[ HEESIFOI-0) ~ (s.CSIFO1—0)1dF @)

+{7_ 214, O F.ESIFL]—0)—s,@SFP) - )| dF (o)
=<|{I” FesiFe-s)+s@SFO1-n)yaF@)]

+2{|” 14 orar@)| |
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X [Sl {F.(28 [Frf”]—-’”)—sn(zs[Fé‘)]—w)}zdF(w)] v

By the definition of s,, it holds that sup|F,(u)—s.(4)|<1/n and Lebes-

gue measure of {x; s,(x)# F,(x)} =1/n’. The latter immediately implies
F-measure of {z; s,(x)#F,(x)} <p/n?, where p=sup f(x). Then we have

| T[F]— Ty [FP]| < 62 n? for all t€[0,1].
Consequently,

WTFP]—T[F)—0
as n—oo for all we 2 and for all t€[0,1].

Hence it suffices to investigate the asymptotic distribution of T, [F].
We have (2.7)-(2.11) by differentiating T,[F”] with respect to t.

@n LB 21— )F @)+t @)+ 1) FESIFP]—2)

+18.(2S[F"] —x) —1}g(t, x)dF () ,

where
9(t, »)=F(x)— F(x)— F(2S[F{"] —x)
+2(1—1t)f(2S[F®]—x) is—%& +8,(2S[F"]—x)
+2ts/(2S[F©] — ) BEF"]
dt
dTFP | _
g LOE —o.
@9 ZHE_[" aoligt, )+ {A-OF @)+ (x)
+ A=) F@RS[F]—x)+1s,(2S[FP] —x)—1}
dg(t, x)
x 40t ]dF(x) :
where
90e2) - 48P —a) LI -t rESIFC)-2)

dSIFO1N® L or o1y ESIFO]
% {T} +2(L—)f@S[FP]—x) 2L

+48/(2S[F ] — ) dS[F ASIFYO) | g1gm(28[FO)—1x)
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{dS[F ]} +2s/(2S[F®]— w)&g(—tl'

(2.10) iif%[t—lf'ﬂ =2 S: {g(0, x)}!dF(x) .

ETIFO] [~ dot, 2) | 1y
@2.11) T—S-w [Gg(t, £) WE2) o ((1—-OF @) +HF(0)

+(A =) F@2S[F"]—x)+1s,(2S[F"] —x)—1}
dig(t, x)
x T]dF(x) ,

where

Lol3) - _1opesiFel—o) [ BE 6p@sirel—a)

ds [F ] } :
dt?

x B 1 30—ty rresiFel-o (S

o
+12(1—1) f(2S[F] ) dSEiI*:"l dzsollfz'“’]
+2(1—t)f(2S[F;c>1—x)ﬁ§5;&
+128//(2S[F 0] — w){ as [dl;’”)] }
+6s,’,(2S[F,§‘>]—x)_df.Sd[_§&

+8tsP(2S[F©] — ) { dSEiI;',ED] } 3

%) dS[F°] d*S[F]
dt dt:
d*S[F®)
dt? )

+12ts/(2S[F ] —
+2ts(2S[F°]— )

By Assumption (A2) and from (2.7), (2.9) and (2.11) we have

del[F(t)] ‘—-)O

(2.12) n??7° sup in probability
t

for any 6>0 and p=1, 2,3. Set
B, (x)=F,()— F(2)— F(2m—x)+2f(2m—x)
x|SO wdlF )~ Fa,

then we have
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(2.13) |Bu(x)|<4 for sufficiently large n.

From the definition of T[F,] and by Schwarz’s inequality and (2.13),
we have

' ( d'T\[F,]
dt

=" asen—ay-(F.eEn—o)iiFe)

0) —2T[F)]

+4 | |B@)lls.2m—2)— F2m—2)|dF (2)
=@+16){|" Em—9)-Fen-a)ydF@)]"
<20p"2In? for sufficiently large = .

Consequently we have

(2.14) n(ﬂggﬂ _0—2T[F,f‘>]>—>0 as n—oo for all we 2.

Let’s assume that a functional R[F”] is (m+1) times differentiable
with respect to ¢, and

d’R[F"]

(2.15) o

=01 p:]-)"'ym—'ly

t=0
hold. Suppose moreover that

CRFCL| g

7 in probability as n— oo

(2.16) nY"% sup
t

for any >0 and ¢=1,--., m+1.
If we set t=1 on the Taylor expansion for R[F’] of order (m+1)
at the point t=0,
1! dt =0 m! dtm
t'm.-H dm+1R[Frst)]
(m+1)! dtmtt

then we have by (2.15)

R[F’]=R[F]+

t=0

+

t=6

1 d""R[F®]

_Rp)- L RIFSY
(2.17) R[Fn] R[F] =0 (m+1)' dtm-i-l

m! at

t=6' ’
Then (2.16) implies

2.18) nA(R[F,]—R[F]) -1 4"ELF:"]
m! dtm

—0 in probability .

=0
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By (2.7)-(2.12), T\[F] satisfies (2.15) and (2.16) with m=2. Therefore
we have

(2.19) nTl[Fn]e_;@_'ﬁ%l —0  in probability as n—s oo .
1 t=0

Proposition 1 now follows from (2.14) and (2.19).

PROOF OF PROPOSITION 2. By the definition of T'[F,] we have
TIF)=|__(F@)-F@ydF@+|" {F@em—o—Fem—o)ire)
+4{|”_sorF:waF@-Fwl | fen—ndre)
+2|"_ {Fi@)— F@)} (F.@m—2)— F@m—2))dF (z)
+4 (" SOLF: wldlF,w)— F()]
x| {F @) -F@)fem—o)iF@)
+4 " SOUF: wld[F, ()~ F ()]

x S:, (F.2m—u)— F@m—)} f(2m—2)dF (x) .

The result of Proposition 2 is shown by the following calculations (2.20)-
(2.24).

(2.20) Sl {F(x)— F(2)}'dF(v)
= So_aw {So_om (Fn(w)_F(x))X(—DO,x](Z)dF(a})}d[Fn(z)_F(z)]

- S:, S: {S: X(—w,x](y)X(—w’“’](Z)dF(x)}
Xd[F(y)—FW)d[F.()—F(2)] .

2.21) S°_° (F(2m—a)— F(2m—2)}'dF(z)
=" rw-Foyerw

- S°° S:, {S: X<—m.x1(y)x<-m,x](z)dF(x)}

—o0

Xd[F(y)—F(y)1d[Fu(2) - F(2)] .

(2.22) S: [F(2m—u)— F(2m— )} {Fu(x)— F(2)}dF ()
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B .

< dLF.0)— F@LF ) ()
@23) | SOUF:wdlF,—Fw) | (F@)—F@)f@m—e)dF)
={"_setr: wdrF ) - F)
x{" ([ rem—opc.o@dF@)dF.o—F@)

=S°° S‘” HSL x(_m,zj(z)f(2m—w)dF(x)}S‘“[Fi y]}

—oo

XA[F(y)—F()d[F(2)—F(2)] .

(2.24) S: SO[F: wd[Fy(w)—F(u)]

x S: (Fu2m—u)— F(2m— )} f(2m —)dF(z)

oo

=S:, SPLF: uld[Fo(u)—F(u)] S F.@)—F@)} f(@)dF (@)

=" U rememm@ar@)] soF: o]
XA[F(y)—F())d[F.(2)—F(2)] .

By Theorem 1 and Theorem 2 we can conclude that the asymp-
totic distribution of nT[F,] under the hypothesis H is equal to the
distribution of the double stochastic integral defined by (2.4).
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