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Summary

Procedures to estimate a dose of which the incidence probability
is very small (e.g. 10~%) have been developed to evaluate the safety of
chemical compounds. To compare models for estimation of safe doses
quantitatively, a measure of the heaviness of tail of a distribution and
a measure of tail at the origin are introduced. These measures have
a theoretical basis for the comparison of tail behavior between distri-
butions. Using the two measures, a tail ordering is defined to present
a criterion for the comparison of models and is discussed for the probit,
the logit, the Weibull, the (generalized) multihit, the (generalized) multi-
target and the multistage models.

The multistage model is most conservative among them, while the
probit model has the reverse property. The Weibull model is more
conservative than the logit. The multihit and multitarget models are
found to be more sensitive than the Weibull and the logit.

1. Introduction

Recently many statisticians have become interested in the method-
ology of safety evaluation of chemical compounds. Procedures are be-
ing developed which depend upon dose-response relationships where the
response of primary interest is usually carcinogenesis. (The reader is
referred to [3], [9], [10], [11], [14] for a sample of such procedures.)
Most investigators have concentrated on the mathematical and compu-
tational techniques for treating data under an assumed, dose-response
model. Less attention has been given to the choices of reasonable
models which is a difficult or impossible problem without adequate bi-
ological guidance.

In this paper we shall look at several of the dose-response functions.
We will use the concept of the heaviness of the tail of a distribution
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which has been of value in reliability theory, robust estimation and
nonparametric inference [1], [5], [13]. The heaviness of the tail of the
dose-response model distributions will be considered numerically. The
results will hopefully provide some insight into model selection.

Two measures of the heaviness of tail of a distribution are intro-
duced. One of them is defined by the standard deviation of a tolerance
distribution for log-transformed variable. The other is a measure of
the behavior of the distribution at the origin.

We restrict ourselves mainly to six families of distributions which
are used as representing tolerance distributions and are listed in Table
1. We do not distinguish among a distribution, the distribution func-
tion and a random variable with the distribution for simplicity, unless
some confusion would result.

Table 1. Models in study, the corresponding tolerance distributions
and the distribution functions

Model Conesggsrésiiggti?x}erance Distribution function?
Probit model Lognormal, L4(v) (v>0) Fy(v, 2)=9(v log x)
Logit model Loglogistic, -L£.(8) (8>0) F (8, x)=x*/(1+xF)
Weibull model Weibull, Ly(y) (r>0) Fy(r, z)=1—exp {—27}
st Gamma, Lo(k) (k>0) Folk, 5)={" #teyre)at
Multitarget model Minimum Exponential, 1
(generalized) Lu(d) (1>0) Fu(, z)=(1—e)
Exponential Polynomial,
Multistage Lp(n, ai,--, an) Fr(n, fll’._'e" a’(t’_xz): (:2)")
(2;=0 and 3 a;>0) =1—exp ol

1) A scale parameter is preassigned as 1 for simplity.

The paper is constructed as follows: In Sections 2 and 3, a meas-
ure of tail and a measure of tail at the origin are defined and their
properties are given. A tail ordering among distributions using the
- two measures of tail is defined, and tolerance distributions are compared
by the ordering in Section 4. The results are examined by calculating
the tail probabilities at the origin for various specific distributions in
Section 5. Finally, in Section 6 the results are also examined practi-
cally using twelve data sets.

2. Measure of tail of a positive random variable

Let X be a random variable and F'(x) be its distribution function.
Throughout this paper it is assumed that F(0)=0 and F(x) has a posi-
tive density function f(x)>0.

As seen in the probit and the logit analyses, dose data are initially
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log-transformed. The distribution of log X (with distribution function
F(e®)) is then of interest as well as that of X.
A measure of tail of X is defined by

DEFINITION 1. 7(X)=4+Var (log X).

There are other measures of tail such as Gini’s coefficient of con-
centration, the kurtosis and the coefficient of variation. But these
measures are inconvenient for our purposes. Here it should be noted
that our definition has a theoretical basis. As shown in [14], the heavi-
ness of tail of X and the size of dispersion of log X are closely related.
Let Y be a random variable with the distribution function, G(x). Y is
called to have heavier tail than X, iff G™(u)/F~'(u) is increasing in 1>
#>0, which is denoted by Y>X(J). Y»X(), iff G*(u)—G*'(v)=
F*Yy)—F*-(v) for 1>u>v>0, where G*(x)=G(¢*) and F*(x)=F(¢).
This condition means that log Y has the larger size of dispersion than
log X. Since the standard deviation is a natural measure of the size
of dispersion, our definition become to be natural. In addition, =(X)/
log, 10 in the probit model is equal to the inverse of the so called slope.
Thus 7(X) in a general model can be considered to be a global measure
of the inverse of the slope of the dose-response curve to log-transformed
doses.

In many cases the calculation of the measure of tail is not com-
plicated. For several families of distributions, the measures of tail are
represented in the following proposition. The proofs are found in lit-
eratures for example [7], [8].

PropPOSITION 1. The measure of tail of a random variable X, #(X),
is represented as follows.

(i) Lognormal distribution: Suppose that X has the distribution
function Fy(v, z). Then o(X)=1/v.

(ii) Loglogistic distribution: Suppose that X has the distribution
function F,(8, ). Then «(X)=x=/v3 5.

(iii) Gamma distribution: Suppose that X has the distribution
function Fy(k, x). Then

T(X)=\/§ 1/(n+k)? =\/1/k+2/k2+1/6k’——§ 1/{(n+k)(n+1+K)}.

(iv) Weibull distribution: Suppose that X has the distribution
function Fy(y, x). Then «(X)=x/v 6 7. Especially, the measure of tail
of the exponential distribution is =/v6 .

The measures of tail of the minimum exponential and the exponen-
tial polynomial distributions can not be represented explicitly, though
a recursive formula for =(Fy(1, )) can be obtained only when 1 is a
positive integer [14].
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Table 2. Measures of tail of distributions in typical families
at various levels of parameters

Pameter Lggiormal Loglogige el Gapma Minimum B
0.5 2. 3.628 2.565 2.221 2.210
0.6 1.667 3.023 2.138 1.907 1.897
0.7 1.429 2.591 1.832 1.683 1.676
0.8 1.25 2.267 1.603 1.516 1.511
0.9 1.111 2.015 1.425 1.387 1.384
1 1. 1.814 1.283 1.283 1.283
2 .5 .907 .641 .803 .827
3 .333 .605 .428 .628 .670
4 .25 .453 .321 .533 - .587
5 .2 .363 .257 470 .534
6 .167 .302 .214 .426 .497
7 .143 .259 .183 .392 .469
8 .125 227 .160 .365 447
9 111 .202 .143 .343 .429
10 1 .181 .128 .324 414

Table 2 presents the numerical values of 7(X) for the distributions
with the parameter of each distribution ranging over values 0.5(0.1)1
(1)10. Figure 1 illustrates the values for the parameters between 0.5
and 5.0. These calculations show that «(F,(k)) and =(F'y(1)) are close
to each other when their parameters k and 1 are identified.

The parameters of each of the above distributions can be regarded
as a “tail parameter ”, though they are usually called a shape parameter.
The nomenclature of the shape parameter is too general. Parameters in
the lognormal, the loglogistic and the Weibull distributions should be re-
ferred to a power parameter [15]. In each, the scale parameter has been
assigned the value 1, since it is a nuisance for comparison purposes.

The notion of the heaviness of tail is popular in the various fields
of statistics. X is called to be increasing hazard (failure) rate average,
iff the exponential distribution function, 1—e~® has heavier tail than
F(x). The following proposition presents two general properties of the
measure of tail which are useful for subsequent discussions.

PROPOSITION 2. (i) Y»X(4) implies 7(Y)=7(X). Thus within
the families discussed here except for the exponential polynomial dis-
tributions the measure of tail is decreasing in its parameter.

(ii) Suppose 7(X)<oco. Then (X*)=|a|7(X) for any a.

Recently, the multistage model was discussed in [3] and has at-
tracted many researchers’ attention. The corresponding distribution to
the multistage model is the exponential polynomial distribution, which
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Fig. 1. Measures of tail of distributions in typical families
with parameters between 0.5 and 5.

is given by F(x)=Fp(n, aj, -, a,, £)=1—exp <—$(aix)">, and the

measure of tail can not be represented by a simple form. However,
inequalities between the measures of tail within the family of exponen-
tial polynomial distributions are available.

PROPOSITION 3. Suppose
F@)=Fy(n, a,+ a, z)=1—exp (3] (aa)),

and let m represent the minimum integer 7 such that «;>0. Then
7/(v'6 -n)<t(X)</(v'6 -m). Especially, the measure of tail of an ex-
ponential polynomial distribution is equal to or less than n/\/ 6.

PrOOF. The proof follows from Theorem 1 in [16] and Proposition 2.

3. A measure of tail at the origin of a distribution

Since a risk is assigned to be a very small value, such as 10~% or
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1078, an estimator of the corresponding dose level depends heavily on
the behavior of the tolerance distribution at the origin. To evaluate
it quantitatively, the following limit discussed in [16] is helpful.

DEFINITION 2. The measure of tail at the origin, z(F(x)) is defined
by

a(F@)=lim w/{f(F-@)F~ ()} =lim F@)/{f ()2}

PROPOSITION 4. Suppose that a density function f(x) is continuous
and that the following two statements hold:
(1) lim F(z)/{zf(x)}=a.
(ii) There exist a number 8 and a positive number ¢ such that
lig)l F(x)/x*=c.

Then g=1/a.

ProoF. This is easily shown using the theorem of Cauchy’s gen-
eralized law of the mean.

Remarks. A) The above proposition shows that the measure of
tail at the origin of a distribution represents the inverse of the order
of F(x) in x at the origin. Definition of the measure of tail at the
origin based on the statement (ii) would be more intuitively appealing
than ours, Definition 2. However, our definition is consistent with the
definition of the heaviness of tail represented by the function 1/{f(F!
w))F~'(w)}: G(x) has heavier tail than F(z), iff 1/{g(G'(w))G'(w)}=
{f(F~'(w)F~'(w)} for any » (0<u<1) ([16]).

In connection with this, it should also be noted that the conditions
(i) and (ii) are slightly different in the sense that the classes of distri-
butions satisfying these conditions are not identical. Suppose that for
any small z, F(x)=x"*(—log«). Then (i) holds while (ii) does not hold
for any 5>0.

B) To evaluate the behavior of a distribution more precisely, we may
introduce another number { in Definition 2. Suppose there exist posi-
tive numbers { and « such that

lim FY(x)/{xf(x)} =« .

These numbers are measures of tail at the origin. A larger values of
¢ means heavier tail at the origin. It is easily shown that { is equal
to or larger than 1 for any distribution.

The value of £ is 2 for exp X, X being a standard Cauchy random
variable, which have heavier tail than any of the distributions we are
considering in the present paper.

The next proposition presents explicitly the measures of tail at the
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origin for the families of distributions in Table 1.

PROPOSITION 5. Measures of tail at the origin are represented as
follows :

(1) 7(Fnlv, 2))=0,

(ii) =(Fo(B, 2))=1/8,

(i) =(Fyw(r, ©))=1/7,

(iv) z(Fe(k, x))=1/k,

(v) wo(Fu(, ))=1/2 and

(vi) t(Fp(n, ai,---, a,, 2))=1/m,
where m is the minimum integer such that «;>0.

Example 1. When we take the spontaneous incidence rate into
account, Abbott’s correction is used, that is for a tolerance distribution
function Fy(x) and a spontaneous incidence rate P, the dose-response
curve is presented by F(x)=P,+(1—Py)Fy(x). Another correction is ob-
tained as follows: for a spontaneous incidence rate P, the dose-response
curve is presented by G(x)=F(x-+x,), where P,=F(x,), which is called
the additive model [6]. In this case the distribution function corre-
sponding to Fi(x) in Abbott’s correction is written by G*(X)=(F(z+
%) — Py)/(1— Py).

Suppose that F(x) is differentiable at x,. Then the measure of
tail at the origin of G*(x) is 1, which is equal to that of the exponen-
tial distribution. Numerical examples were presented in [6].

4. Tail ordering among distributions for comparisons of models

Let {F(a, 8, )} and {G(«’, §', )} be two families of tolerance dis-
tribution functions, where ¢ and &' are scale parameters and 8 and p
represent tail parameters. Suppose that both tolerance distribution
functions are fitted to a common data by the maximum likelihood method

and that the estimated distribution functions are F(&, 8, x) and G(&, §,

z). Then we can guess that «(F(a, ,z§, z)) and (G(a/, ,/.3', x)) are close to
each other. In fact the parameters are estimated so that the estimated
distributions and the empirical distribution induced by the data are

close to each other. Thus values of the global measure of F(a, ﬁ, x)

and G(&, f', x) are usually close to each other. And we should recall
that the measure, r is the standard deviation of the log-transformed
variable by Definition 1. This guess will be examined using practical
data sets in Section 6.

On the other hand, we use F~!(a, B, p) and G (&, 8, p) for small
values of p such as 107% or 10~® as point estimators of a virtually safe
doses. These values depend heavily on the behaviors of tail at the
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origin of both distribution functions, whose measures are ,(F(a, B, 2))
and (G, #, x)).

The above speculation derives a tail ordering among distribution
functions which permit us to compare models for estimation of safe
doses. We again suppress the scale parameter by giving it the value
one.

DEFINITION 3. Let {F(B, )} and {G(#, x)} be two families of dis-
tribution functions. {G(#, x)} has the larger measure of tail at the
origin under a common measure of tail than {F(8, x)} for an interval
I, iff for any value ce I, there exist g, and B such that c=t(G(5}, x))
=‘Z'(F(,B0, x)) and To(G(.Bév x))gTO(F(.BM x))'

From the above definition a model with G(g, ) as the tolerance
distribution function is considered to be more conservative than another
model with F(B8, z), if G(8, ) has the larger measure of tail at the
origin under a common measure of tail than F(B, x).

Next we present tail orders among distribution functions in Table
1 exactly. Proposition 5 shows that measures of tail at the origin are
the inverse of parameters except for the lognormal and the exponential
polynomial distributions. Since that of the lognormal distribution func-
tion is zero, it has the smallest measure of tail at the origin under a
common measure of tail for (0, o). Contrarily, it is easily shown that
the exponential polynomial distribution function has the larger measure
of tail at the origin under a common measure of tail than the Weibull
for (z/¥ 6, o).

In addition the measure of tail is decreasing in each parameter as
shown in Section 2. Thus the tail orders among distribution functions
are transferred from those of measures of tail of distribution functions
with a common parameter. These are summarized as follows.

ProprOSITION 6. Let {F(B3, x)} and {G(8,x)} be two families of
distribution functions. Suppose that F'(8, x) and G(8, ) have 1/8 as
their common measure of tail at the origin and that the measure of
tail of F(8, ) (or G(B, x)) is strictly decreasing in 8. Then

(i) Suppose =(F(8, x))>7(G(8, x)) for any B. Then =(F(f, x))<
7(G(B, x)) for any g and § such that (G(8, x))=1(F(8, x)).

(ii) Suppose there exists g, such that «(F'(8, x))>(G(8, x)) for <
Bos o(F(By, x))=7(G(By, x))=¢, and =(F(B, ))<7(G(8, »)) for p>pF. Then
o(F'(8, ))<7(G(8', x)) for any 8 and B such that «(F(8, x))=c(G(#, x))
€ (0, ¢], and =(F(B, 2))=7(G(8, «)) for any B and p’ such that (F(5, x))
=7(G(f', ®)) € [, o).

Using Proposition 1 the orders of measures of tail among distribu-
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tion functions are easily derived. But to determine the orders of meas-
ures of tail between the minimum exponential distribution and other
distribution functions we need numerical computation, since it is impos-
sible to represent the measure of tail with a simple form for the min-
imum exponential distribution. Extensive computations derive the fol-
lowing results: For 81 it holds that =(Fy(B8))<min {z(F(B)), (F(B)),
o(Fw(B))}, for 2.234=p=1 it holds that max {z(Fy(8)), «(Fs(8)} = «(Fu(B))
<z(F.(B)) and for 8=2.234 it holds that max {=(F';(B)), 7(F.(B)), 7(Fw(8))}
=7(Fu(B)).

If we can assume the above results analytically, then we have the
following

PROPOSITION 7. (i) Suppose a common measure r of tail of dis-
tribution functions is in [z/+ 6, o). Then it holds that

t(Fu(2, 2)) 27(Fa(k, 2)) 27 Fw(r, €)) Z o FL(8) ) 27 Fu(v, 2)) ,

where the value z/v 6 is obtained by =/v 6 =t(Fy(l, x))=7(Fs(1, x))=
o(Fy(1, x)).

(ii) Suppose a common measure of tail is in [.809, /¥ 6 ]. Then
it holds that

(Fp(n, ai,- -, ay, x)) Zt(Fy(y, x)) Z7o(Fo(k, 2)) 2 7o(Fu(2, x))
Z7(FL(B, 2)) Zt(Fn(v, ¥)) ,

where the value .809 is obtained by .809=1(Fy(2.243, x))=1(F',(2.243, x)).
(ili) Suppose a common measure of tail is in [.664, .809]. Then it
holds that

t(Fp(n, ay,- -+, @y, 2))Zt(Fw(r, ¥)) Z(Fe(k, x)) Z7(FL(B, ¥))
Z7(Fu(4, 2)) Z7o(Fy(v, x)) ,

where the value .664 is obtained by .664=1(F;(2.730, x))=r(F'.(2.730, x)).
(iv) Suppose a common measure of tail is in (0, .664]. Then it holds
that

o(Fp(m, ay,: -+, an, 0))Z(Fy(ry, 2)) Z(F (8, z))Zt(Fs(k, x))
gTO(FM(L x))_Z_TO(FN(”’ x)) .

The proof follows directly from Propositions 5 and 6. In Proposi-
tion 7(i) the exponential polynomial distribution Fp(n, a;,---, a,, ) is
is absent, since the measure = of this distribution must be less than or
equal to /v 6 .

According to the criterion of Definition 3, the multistage model is
most conservative, and the probit has the reverse property. The Wei-
bull model is more conservative than the logit. The multihit model as
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well as the multitarget is conservative when the parameter is small,
say less than 1, but is not conservative when the parameter is large,
say greater than 3.

5. pth quantile under a common measure of tail

Though the results in the previous section are simple and clear,
they are of the limiting case. When a common measure of tail is as-
signed exactly, the behavior of tail of a distribution can be obtained
by calculating the pth quantile. Tables 3-1, 2, 3 and 4 give the pth
quantiles of the distribution functions for p=0.1, 0.01, 107%, 107% and
1078 in the case that the common measure of tail takes values log, 10,
7/v 6, n/¥30 and =/¥/300. Here r=log,10 is attained for &(logy ),

Table 3-1. pth quantile of distributions whose measures of the heaviness
of tail is common: Case 7=log 10

Corre- D
sponding
parameter 0.1 0.01 108 108 108
Lognormal (v) 0.434 .0523 .472x 102 .812x10-% .176x10~* .244x10-5
Loglogistic (8) 0.788 .0615 .293x10~2 ,157x10—% .242x10~7 .698x 1010
Weibull (7) 0.557 .0176 .259% 108 .412x 105 .169x10-10 .434x 1014
Gamma (k) 0.479 .640%x 102 .523x10~* .430x10~¢ .238x10-'2 .160x 10~

Minimum Ex. (1) 0.476 .801x10~% .637x10~* .508x10~% .258x10"1% .164x10-16

Table 3-2. Case t=7/v6

Corre- »

sponding

parameter 0.1 0.01 103 10-¢ 108
Lognormal (v) 1.283 .193 506 x10* .190x 107! .225x10~3 .748x10-%
Loglogistic (8) 1.414 .211 .388x10t .757x10~ .291x10~* .220x10-5
Weibull (7) 1 .105 .101x10t .100x 102 .100x10~5 .100x10~7
Gamma (k) 1 as above
Minimum Ex. (2) 1 as above

Table 3-3. Case t=x/v30

Corre- V4
sponding
parameter 0.1 0.01 103 10—¢ 10—
Lognormal (v) 1.743 .479 .263 .170 .655x10% .400x 10
Loglogistic (8) 3.162 .499 .234 .113 .127x10t  .295x 102
Weibull () 2.236 .366 .128 .455x 10—t .207x10~2 .264x10-3
Gamma (k) 3.513 1.425 .624 .302 .399x 10t ,107x 10!

Minimum Ex. (1) 4.211 .865 .408 .215 .383x10t  .127x 10!
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Table 3-4. Case t=nr[+v300

Corre- P

sponding

parameter 0.1 0.01 103 108 10—
Lognormal (v) 5.513 .793 .656 571 .422 .361
Loglogistic (8) 10.000 .803 .632 .501 .251 .158
Weibull (7) 7.071 727 .521 .377 .142 .0739
Gamma (k) 30.894 24.02 19.45 16.51 11.23 9.039
Minimum Ex. (1)  295.255 4.858 4.168 3.767 3.085 2.805

which was assumed in [9] as a conservative tolerance distribution func-
tion. The measure of tail of the exponential distribution is =/v/ 6 .

Chand and Hoel [2] presented the pth quantiles in the case r=log, 10
for several families including the lognormal, the loglogistic and the
Weibull distributions. Numbers corresponding to the loglogistic distri-
bution in Table 1 in [1] should be corrected by using Table 3-1.

Characteristics of the families of distributions obtained in Section 4
are clearly noticeable in Table 3. Largest values of the 107%th quantiles
relative to those of the .1th are attained by the lognormal distribution.
The 10~%th quantiles of the gamma and the minimum exponential dis-
tribution funections are very small in the case r=log, 10, but much larger
than those of the Weibull distribution in the case r==/+300.

6. Application to practical data sets

We shall apply our models to a common data set in order to ex-
amine whether or not estimated measures of tail of the tolerance dis-
tributions are close to each other and also to examine whether or not
orderings of measures of tail at the origin under a common measure
of tail among the tolerance distributions characterize the models for
estimation of safe doses. The multitarget model is omitted here, since
it is similar to the multihit.

Each of the models except the multistage model includes three
parameters by adding a scale parameter and a parameter representing
the spontaneous incidence rate. In each of the models, the parameters
are estimated using the maximum likelihood method from each of the
data sets in [11] and [12], which are given in Table 4.

The measure of tail of fitted distribution functions and the meas-
ures of tail at the origin are listed in Table 5. Here the estimated
spontaneous incidence rates are disregarded.

The exponential polynomial distribution is fitted by using the pro-
gram “global” by Deal [4]. The estimated parameters of the gamma
distribution are recalculated. Numbers corresponding to the data sets
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Table 4 [11].

Twelve sets of toxic response data

D Levels of d No. of No. of
ata set evels of dose . animals
No. Substance tested (unit) atn;;?:;s w/toxic
response

0 (ppm.) 58 0

50 59 1

1 Viny! chloride 20 » 3

2500 59 13

6000 60 13

0 (mg./kg. 10 0

5.4 over 6 1

2 Methylmercury 17.0 3mg./kg). 8 3

chloride 43.0 7 3

71.0 8 7

173.0 8 6

0 (% in diet) 10 1

5 10 1

3 Span oil 10 10 4

15 10 4

20 10 5

0 (ppm.) 111 4

2 105 4

4 DDT 10 124 4

50 104 13

250 90 60

0 (ppm.) 29 0

5 Dimethyl- 2 - 9

nitrosamine 10 5 9

20 23 15

(1).00 (ppm.) 156 17

. . .25 60 11

6 Dieldrin 250 58 25

5.00 60 44

0 (ppm.) 24 0

2, 3,7, 8-tetra- 0.125 38 0

7 chloro-dibenzo- 0.25 33 1

p-dioxin 0.5 31 3

1.0 10 3

0 (mg./kg.) 284 44

2, 4, 5-trichloro- 25 140 14

8 phenoxyacetic 50 161 37

acid 100 110 32

150 58 32

6 (mg./wk. 300 0

o | oo | B mE W)

48 300 99

0 (ppm.). 72 15

5 75 23

10 Ethylene 25 73 13

thiourea 125 73 16

250 69 31

500 70 63
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Table 4. (Continued)

Data set Levels of d No. of ol
ata se evels of dose p animals
No. Substance tested (unit) atr:;:lezgs w/toxic
response

0 (mg./kg.) 167 0

5 132 0

1 Ethylene 10 138 1

thiourea 20 81 14

40 178 142

80 24 24

.010 (ng. in 30 0

.015 0.05 ml. 30 0

.020 sodium 30 0

.024 phosphate 30 0

Botulinum .027 buffer) 30 0

12 toxi .030 30 4

oxin-type A ‘034 30 11

.037 30 10

.040 30 16

.045 30 26

.050 30 26

Table 5. Estimated measures of tail in five typical models
for twelve data sets

Estimated Estimated
Data set Tolerance measure of
No.  distribution measure of tail at the
origin
Lognormal 3.895 0
Loglogistic 3.810 2.101
1 Weibull 2.925 2.281
Gamma 2.658 2.460
Exp. Poly. 1.283 1
Lognormal 2.154 0
Loglogistic 2.024 1.116
2 Weibull 2.193 1.710
Gamma 2.418 2.207
Exp. Poly. 1.283 1
Lognormal 1.015 0
Loglogistic 1.115 .615
3 Weibull .948 .739
. Gamma .927 .626
Exp. Poly. 1.003 1
Lognormal .934 0
Loglogistic .992 .547
4 Weibull .849 .662
Gamma .859 .556

Exp. Poly. .870 1
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Table 5. (Continued)

Data set Tolerance Estimated n];:eszlsttrll?;egf
No. distribution mea::ilie of tail at the
origin
Lognormal .718 0
Loglogistic .749 .413
5 Weibull .641 .500
Gamma .655 .358
Exp. Poly. .641 .5
Lognormal 744 0
Loglogistic .815 .449
6 Weibull 772 .601
Gamma .740 .438
Exp. Poly. .825 1
Lognormal .928 0
Loglogistic .843 .465
7 Weibull .638 .498
Gamma .709 .409
Exp. Poly. .641 .5
Lognormal .788 0
Loglogistic .730 .403
8 Weibull .568 .443
Gamma .639 .343
Exp. Poly. .556 .5
Lognormal .763 0
Loglogistic 712 .393
9 Weibull .544 .424
Gamma .614 .320
Exp. Poly. .532 .5
Lognormal .405 0
Loglogistic .437 .243
10 Weibull .464 .362
Gamma .419 .162
Exp. Poly. .465 .5
Lognormal .404 0
Loglogistic .412 .227
11 Weibull .378 .295
Gamma .387 .139
Exp. Poly. .428 .333
Lognormal .194 0
Loglogistic .204 112
12 Weibull .212 .165
Gamma .193 .037

Exp. Poly. .214 .167
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No. 4, 5 and 10 in [11] should be corrected by using Table 5.

To data sets No. 1 and 2 the multistage model is ill fitted and the
estimated measures of tail are x/+¥ 6 which are much less than those
in other models. Here we should recall the fact that «(Fe(n, a,---,
a,, £))<z/v'6. This means the model is inapplicable to these two data
sets. Thus we will disregard the calculated values corresponding to
these cases in the following consideration.

From Table 5, we find that, for all data sets, the estimated meas-
ures of tail of a group of the gamma, the Weibull and the exponential
polynomial distributions are close to each other, and the same is seen
for those of another group of the lognormal and the loglogistic distri-
butions, where the values for the latter group are apt to be larger
than the former. Especially, the differences between them seem to be
a bit large in the case of data sets No. 1,7, 8 and 9. In spite of these
differences we can conclude roughly that the estimated measures of tail
are stable, even though the assumed tolerance distributions are different.

Next we turn to the estimated measures of tail at the origin. As
stated above the estimated measures of tail are close to each other.
Thus these measures are regarded as the estimated measures of tail at
the origin under a common measure of tail.

Throughout all the data sets the maximum measures are attained
by the exponential polynomial distribution and the minimum by the
lognormal. The estimated measures of the Weibull distribution are
larger than those of the loglogistic. As for the gamma distribution
the order of the estimated measures are changeable. In fact for the
data sets No. 1 and 2 the estimated measures are larger than those of
the Weibull distribution. For the data sets No. 3 and 4 the estimated
measures are smaller than those of the Weibull distribution and larger
than those for the loglogistic. For the other data sets the estimated
measures are smaller than those for the loglogistic distribution. These
findings correspond to the results in Proposition 7.
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