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Summary

The problem of allocating a single observation to one of the two
available populations is considered. Suppose that a certain character-
istic has density f in one population, and has density g in the other.
On the basis of the value observed, one must specify which population
has density f. It is assumed that when a wrong population is chosen,
a certain known loss is incurred. The problem is to allocate the ob-
servation so as to minimize the expected loss. General conditions on
f and g are derived to decide which population should be selected for
taking the observation.

1. Introduction and summary

Let f and g be two given probability density functions (p.d.f.’s)
with respect to some o-finite measure p on an arbitrary sample space.
Consider a problem in which two experiments, or populations, X and
Y are available to the experimenter, and it is known that one of the
following two hypotheses must be true,

H,: X has density f and Y has density g,
H,: X has density g and Y has density f.

In this paper, it is assumed that a single observation on either X
or Y is available to the experimenter. At first, the experimenter must
decide which experiment to select, and after the experiment is per-
formed he must decide which hypothesis should be accepted. In gen-
eral, the experimenter is faced initially with the problem of deciding
how many observations he should take, and in what order he should
take them. Design problems of this type have been considered among
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others by Abramson [1], Bradt and Karlin [3], Chernoff [4], and Feld-
man [6].

For i=1, 2, let =, denote the prior probability that H,; is true (=,
+m,=1). It is assumed that the loss to the experimenter is 0 units if
the correct decision is made and is a, units (a,>0) when H, is true
and H;_; is accepted. Let R,(m) (Ry(m)) denote the Bayes risk when
the experiment X (Y') is performed. Therefore, the experimenter must
select an experiment which yields the lower Bayes risk. In Section 2,
expressions for Ry(r;) and Ry(m,) are derived. Theorem 2.1 enables us
to decide which experiment is optimal. In Section 8, various condi-
tions on f and g are derived to decide which experiment yields a lower
Bayes risk. In Section 4, some examples are presented to illustrate
the results obtained.

For ma,=ma,, a common feature of the results given is that if
the distribution represented by the p.d.f. f is more concentrated than
the distribution represented by g then the optimal experiment is to
select the experiment which under H, has p.d.f. f.

2. Basic result

For any two non-negative functions » and s that are integrable
with respect to an arbitrary o-finite measure g, define

2.1) M(r, s)=S min (r(x), s(%))du(z) .

DEFINITION. Two given p.d.f.’s r and s with respect to p are said
to be mutually disjoint if there exists a set A such that P, (A4)=

SA r(x)du(x)=0 and P, (A)=S s(x)du(x)=1. The set A need not be
A
unique.

A little reflection shows that this definition is indeed symmetric in
r and s even though it doesn’t look like it. If r and s are p.d.f.’s
with respect to g, the following properties of M(r, s) are obvious and
some of them will be used later.

(i) M(r,s)=Ms, ),

(ii) M(r,s)=1 iff r=s,

(iii) for k=0, M(kr, ks)=kM(r, s),

(iv) for =0, 0 M(ar, s)<1,

(v) for 0=Zey<0;, Mayr, 8)< Mlayr, 8),

(vi) M(r,s)=0 iff r and s are mutually disjoint, and

(vii) lim M(er, 8)<1 iff there exists a set A such that P,(4)=0

and P, (4)>0.
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The following theorem enables us to compare the two experiments
X and Y on the basis of their Bayes risks.

THEOREM 2.1. If 7f2>0 and 0£=7r1a1/71'2(12, then
(2.2) Rym)<Ry(m) if and only if  Maf,g)=M(f, ag).

PrROOF. Suppose that we allocate the observation to population X
and observe X=z. For 1=1,2, let d, denote the Bayes decision to
accept the hypothesis H;,. Thus,

(2.83) Ry(r)=ma, P [d;| H]+ma, P [d;| H]
f(x)dp(x)+ma, S( g(@)d p(x)

=m0y S
{2: 110 /() S 790,0(2)} Z: 10, (X)> 19a99(x)}

=M(m,a,f(x), ma,9(x)) =ma,M(af, g) .
Similarly, it can be shown that
(2.4) Ry(m)=ma:M(f, ag) .
The theorem now follows from (2.3) and (2.4).

Remarks. The optimal choice of the experiment depends only on
f, g and the value of . If a=1, or if f and g are mutually disjoint,
then Ry(z,)=Ry(z,). Also, if the experiments X and Y are sufficient
for each other then the two experiments yield the same Bayes risk.
The concept of sufficient experiments is due to Blackwell [2], and is
discussed in DeGroot [56] and Lehmann [7]. Finally, if M(a.f, g)<M(f,
a,g) for some value of a,>0, then M((1/ay)f, g9)>M(f, (1/as)g). This re-
lation implies that if the experiment X should be performed when a=
a, then the experiment Y should be performed when a=1/¢,. Hence,
we shall assume from now on without loss of generality that a=1.

In the next section, it is shown that if f and g satisfy certain
conditions, then

(2.5) M(af, g)=M(f, ag) for all values of a=1.

Therefore, in such a case, experiment X will be selected by every
experimenter whose subjective probabilities =, and =, satisfy the rela-
tion n/m,=as/a,, regardless of the exact values of =, and =,.

The following theorem provides an alternative method for the com-
parison of X and Y.

THEOREM 2.2. Suppose that f and g are p.d.f.’s satisfying
(2.6) P,[x: g(x)=0]=P, [x: f(x)=0] .
Then Ry(r )< Ry(m) if and only if
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2.7 E; [v(=, 0)]2E, [v(z, 2)],
where v(x, a)=max [f(x)/g(x)—a, 0] and v(x, ¢)=max [g(x)/f(x)—a, 0].
PrOOF. Define,
A=[z:af(®)=sg(®)] and  A=[r:ag(@)=f(2)] .
By definition,

Maf, 9)=|
[z: af(2)=9(2)]

_ 841 of (@)dp(w)+1— SAI g(@)dp() .

af @)dp(z) + | o(@)iu)

[z: g(2)<af(2)]

Similarly,
M(f, ag)=| | ag(@)ip(@)+1-| F@dua) .
Therefore,
d(@)=M(ef, 9)—M(f, ag)
=, (@ -as@)ip)—| (@@ —af@)ipe)

using (2.6), we get

- (;’ ((x)) —a)g(o)ptn) | <%)) —a)f@dp@)

=E, [v(z, )] —E; [v(z, a)] .
Since Ry(m)<R,(r) if and only if d(a)<0, the theorem now follows.

3. General conditions on f and g which imply that M(af, g)< M(f, ag)

In this section, some conditions on f and g are obtained which
imply the relation M(ef, g)<M(f, ag) and therefore the relation Ry(r,)
<R,(r). The following notation is developed for later use in this
section. Define,

D={x: f(2)g(x)=0},
B,.= [ f((ac) 2a, xéD:’ Bz,,—[x' 9(x) A >a, xeD}

g() flx) —
_[n. flx) _[,.. g9(x)
Ba,,—[x.—g(——<a, weD] , B4,—[x T )<a, xw]
= sup f(w) ry=sup &) g(x)

zeBu 9(x) YT reBy f(z)
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It can happen that B, or B, is an empty set. When both B, and
B,, are empty sets, then f and g are mutually disjoint. We shall de-
fine 7, (r;) to be zero when By (B,) is an empty set.

In certain problems, it is easy to decide which experiment is op-
timal for large values of a. If az=r,, then ag(x)=f(x) for xe¢ Dr,

where Ir is complement of the set D. Hence M(f, ag)=S f(x)dp(z).
DC
Similarly, for a=r,, M(af, g)=g g(x)dp(x). When a=max (ry, 1), the
Dc
following result becomes obvious:
M(af, )= M(f,ag9) T P,(D)<P (D).

THEOREM 3.1. If 7 <7, and P, (D)<P,(D) then X 1is optimal for
any 'valu,e of a in the interval r<aZr,.

Proor. Since

Maf, =M, 0=\ s@dr@s| f@dpa) .

Also, since M(f, ozg)—_-SDc f(x)du(x), the result now follows.

Given two sets A and B, let A—B denote their difference set. The
following result gives a set of sufficient conditions for experiment X
to be optimal.

LEMMA 38.1. Suppose that a>1 and suppose that the p.d.f.’s f and
g satisfy the following relations:

(3.1) |, @@= g@dp@)
and
3.2) SB . g(x)dp(w)ggsa  f@)u) -

Then M(af, g)<M(f, ag).

ProOF. It can be easily shown that

Maf, 9)—-M(f, 0=~ | f@hp@+|,  (o@)— /@)

da

and
M(f, ag)=M(f, D=(a=D) | o@Mu@)+|

Since

. (f(x)—g(x))du(x) .

a

(Bs.—By)U (Bi,—By)=B;.NB,, ,
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it now follows from the given conditions that d(a)<0.

In the remainder of this section, the sample space S is assumed
.to be the real line. Define,

Hya)=P, [x: _;"_((s))_ga, z¢ D]

and
Hy(2)=P, [a:: J@) <y a¢ D} :

g(z)

In other words, H,(a) and H,(a) are analogous to the distribution func-
tion of the likelihood ratio f/g when X has densities f and g, respec-
tively. Let h,(e¢) and h,(e) denote the derivatives of H/(e) and H,(«)
when they exist. The following theorem gives a sufficient condition
for the relation M(af, g)<M(f, ag) to hold.

THEOREM 3.2. Suppose that for some constant ¢>1, the p.d.f.’s [
and g are such that H, (a) and H,(a) are differentiable functions of a
wn the interval 1jc<a<e, and suppose also that for all a in the interval
1<a<e,

3.3) S% f@)ds< SBM g(z)dz .

Then M(af,g)<M(f, ag) for all a in the interval 1<a<ec.
Proor. It is known that,

(34 d@=| af(e)da+ g% g(z)do— SB“ fya—|

=aH,( =) +1-P(D)—H,(L )~ H/(a)— {1~ PD)- H,(a)]

a

ag(x)dx

2 1

Also,
—limP,[z: axf®) < 4, 1
hy(a) 1}3}1 ,{x as ) <a+ xéD]A
<lim(a+4) P, [az: a§M§a+4, ¢ D]l
4-0 9(x) 4
=aha) .

Similarly, it can be shown that h/(e)=ch,(a), and therefore it follows
that h (a)=ch,(a). A similar argument also shows that k,(1/a)=(1/a)-
h,1/a). Differentiating (3.4) and using the relations established above,
we get
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(3.5) d'@)=H,(1)+H+PD)-1.
It follows from (3.3) that d'(a)<0 for all « in the interval 1<a=<e.
Therefore d(a) is a decreasing function and the theorem now follows.

Suppose now that the set Dr is an interval (a, d) of the real line,
possibly infinite, and that f(x) and g(x) are p.d.f.’s such that f(x)/g(x)
is a strictly decreasing continuous function of 2 on DF. If f and g are
such that

(3.6) S@® 51 for all ¢ Ir,
g(x)

then it can be shown that (2.5) holds. Now, suppose that f and g are
such that the relation (3.6) does not hold. Let x,, z;,, and x, denote
the points of intersection of f(x) and ag(x) (a<7,), f(x) and g(x), and
af(x) and g(x) (@=m,), respectively. It is clear that x,, x;,, and z, exist
and are unique. The following theorem gives a sufficient condition for
the experiment X to be optimal.

THEOREM 3.3. Suppose that Dr is an interval (a, b) of the real line
and that f(x)/g(x) ts a strictly decreasing continuous function on Dr.
Suppose also that r,<r, and P,(D)<P,(D). Finally suppose that for
all a such that 1<a=z7r,,

d

5 14600 d

3.7) S (@) d‘? =0.

Then M(af, )< M(f, ag) for all values of a=1.

PROOF. By definition,
. b Ty b
d(a):S ’g(m)dx+8 af(m)dx—g ag(m)da:—s f@ds .
a Ty a T
Differentiating d(a) twice and using (3.7) we can show that d'(a)=0

for all values of a in the interval 1<a<7;. Thus d(a) is convex func-
tion with d(1)=0 and d(r)<0. The theorem now follows.

The next lemma and theorem provide another set of conditions for
(2.5) to hold.

LEMMA 3.2. If l(x)=log (f(x)/g(x)) is a decreasing continuous, con-
cave and differentiable function of x (©£=0), then

dx, _ —dux,
i B 1asT).
d = l ( =0= l)
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ProoF. By definition, l(z,)=log e and Il(x,)=—loga. Given &>0,
define 2{ and z; such that l(z))=log (a+¢) and l(z})=—log (a+e). It
should also be noted that zj<z,<z,<z;, i.e., dx,/da and dx,/da are of
opposite signs. To show that dx,/da< —dx,/de, one need only show
that »j—2,<wxy—2x,. If x)/=x,+(x,—x}), then it suffices to show that
x>}, ie., —lx)=—Uz)=Uzx)). Now —Il(x))=l(x}). By the mean
value theorem, there exist points ¢ € [x}, ] and 7€ [x,, x}'] such that
U(wo) —Uxd)=(2s—2)I'(§) and Ux))—1l(xy)= (2} —x:)l'(5). Therefore, it fol-
lows that —I(x})=l(x}) if and only if —I'(n)=—U'(¢).

Since £>% and ! is concave, it follows that !'(x) is a decreasing
function of = and hence I'(¢)=I'(3). Therefore z;—x,<x,—2, and the
result follows.

THEOREM 3.4. Suppose that f(x) and g(x) are decreasing continuous
Sunctions of x on Dr. Suppose also that r,<r,, P,(D)ZP,(D), and
log (f(x)/g(x)) is a decreasing, concave and differentiable function of x.
Then M(af, 9)=M(f, ag) for all values of a=1.

Proor. By Lemma 3.2, since log (f(x)/g(x)) is concave we have
dz/da< —dxy/de (1=a=<r). Therefore, in order to establish the rela-
tion (3.7) of Theorem 3.3, it is sufficient to show that f(z,)<g(x),
which is clearly true.

COROLLARY 3.1. Suppose that f(x) is a decreasing continuous func-
tion of x defined on R*, the positive part of the real line. Suppose also
that there exists a constant ¢ (0<c<1), such that g(x)=cf(cx) for all
x>0. If lim (f(x)/f(cx))=0 and log (f(x)/cf(cx)) is a decreasing, com-

cave and differentiable fumction of x (x=0), then M(af, g9)<M(f, ag)
for all values of a=1.

COROLLARY 3.2. Suppose that f(x) is a decreasing continuous func-
tion of x defined on [0, a] such that f(a)=0. Suppose also that there ex-
ists a comstant ¢ (0<c<1) such that g(x)=cf(cx) for all >0. If
log (f(x)/g(x)) is a decreasing, concave and differentiable function of x,
then M(af, 9)SM(f, ag) for all values of a=1.

PROOF. Since 7,=cc and 7, is finite, it follows that »,<r7,. Also
we must have 0=P, (D)<P, (D). Therefore the result follows by The-
orem 3.3.

4. Examples

In this section we shall present some examples to illustrate some
of the results presented in this paper.
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Example 1. Suppose that f and g are uniform p.d.f.’s on [0, a]
and [0, b], respectively, where 0<a<b. Then for a>1,

Maf, 9= Tdo=2,

and
% ifagh,
b a
M(f, ag)=
1 if ag-b—
a

It follows that (2.5) holds and that the experiment X should be per-
formed.

It should be noted that in this example, P,[z: f(2)=0]=(b—a)/b
>0. It follows that assumption (2.6) does not hold and therefore (2.5)
cannot be established by using Theorem 2.2.

However, since B,,=¢, the empty set, for a=1, it follows that
(3.3) holds for all values of «>1, and from Theorem 3.2 it can again
be established that (2.5) holds.

Example 2. Suppose that f and g are two exponential p.d.f.’s de-
fined as follows, for some constant g>1:

Be~#* =0,
f (w)={
0

otherwise ;

e " x=0,
g(w)={
0

otherwise .

It is possible to show with some effort that (2.5) holds by direct
evaluation of M(ef,g) and M(f, ag). However, we shall show that
condition (8.7) of Theorem 3.3 is satisfied for this example, and there-
fore (2.5) must hold.

Solving f(x)=ag(x) for a<p, and af(x)=g(x), we obtain

1 B
m=gy 108 <_>

a

and

Hence
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dz, _ —dz, _  —1
de da a(f—1)

Also D=[r: —o<2<0], =8 and r,=oco. Thus 0=P,(D)=P,(D) and
"n<r,.

It can now be shown that (3.7) holds, therefore, it follows from
Theorem 3.3 that the experiment X yields a lower Bayes risk than
the experiment Y for all values of a=1.

Example 3. Suppose that f; and g, are two normal p.d.f.’s defined
as follows, for some constant ¢°>1:

fi@)= ¢127 e _cocp<oo,
and
gi() = «/217:0“_’2/2” —coLxLoo.

Define f(x) and g(x) by

2 —x2/2 0
f@=] V&= R

0 otherwise ;

—JE e_xz/zq2 0 <LgLoo,
g(w)={ V2me

0 otherwise .

It is clear that M(af, g)SM(fi, eg,) if and only if M(af, g9)SM(f, ag).
As in Example 2, it can be shown that (8.7) holds for 1<a=<e, and it
follows from Theorem 3.3 that (2.5) holds.

However, we shall obtain the same result using Corollary 3.1.
Since l=log (f(x)/g(x))=log e—cx?, where ¢=—(1—1/d%/2, it follows by
differentiating twice that we have d¥/dx*<0. Therefore, [ is concave.
Hence the experiment X should be performed.

5. Conclusion

In each of the above examples, it is interesting to note that the
distribution represented by the p.d.f. f is more concentrated than the
distribution represented by g, and the optimal experiment is to select
the experiment which under H, has p.d.f. f. Some other examples
considered also exhibit the same feature. It is difficult to give a pre-
cise meaning to the concept of one distribution being more concentrated
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than another. An intuitive grasp can be obtained by noting that in
each of the examples given here, the variance of the distribution rep-
resented by f is smaller than the variance of the distribution by g.
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