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Summary

Let {X(t)} be a stationary process with mean zero and spectral
density g(x). We shall use a kth order parametric spectral model f,(x)
for this process. Without Gaussianity we can obtain an estimate of
=(k), say z(k), by maximizing the quasi-Gaussian likelihood of this model.
We can then construct the best linear predictor of X(¢), which is com-
puted on the basis of the estimated spectral density f.,(x). An asymp-
totic lower bound of the mean square error of the estimated predictor
is obtained. The bound is attained if k is selected by Akaike’s infor-
mation criterion.

1. Introduction

There has been much discussion on the fitting of parametric models
to a time series. Most of papers are based on the assumption that the
data come from an autoregressive or autoregressive moving average
process of a known finite order. But it is rather natural assuming the
data come from a linear process with infinitely many unknown param-
eters. From this point of view, Shibata [8] investigated a finite order
autoregressive model fitting to a Gaussian linear process with infinitely
many parameters.

In this paper we shall extend the results of Shibata [8] to the case
when the process is not necessarily Gaussian and the model is not neces-
sarily autoregressive. We evaluate the goodness of the spectral esti-
mate fiw(x) by the mean squared error of prediction which is obtained
by Kolmogorov-Wiener theory. In general the predictor has an infinite
series expansion in time domain, so that it could not be applied in prac-
tice. However the purpose of this paper is not the construction of a
realizable predictor but the order selection and estimation of the spec-
tral density.

In Section 4, we shall give an asymptotic lower bound and define
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402 MASANOBU TANIGUCHI

a concept of asymptotically efficient order selection by extending the
definition of Shibata [8]. In Section 5, if &k is selected by Akaike’s in-
formation criterion [2], the mean squared error of the estimated pre-
dictor attains the lower bound.

2. Preliminaries

Let {X(¢t); t=---,—1,0,1,--.} be a linear process
(2.1) X()=53a(s; Oet—3) . a(0;0)=1,
satisfying
2.2) ,i 7la(g; 0)|< oo, for some 8>1,

=0

where a(7; 6)’s are known functions of an infinite dimensional parameter
0=(0,, 0;,---), and e(j)’s are independently and identically distributed
with finite cumulants «,, s=1,-..,16. The spectral density of {X(t)}
is then written as

@2.3) o(z; ")=§; £ a(d; 0) exp (i) !

where o*=E [¢}(j)]. For notational convenience, sometimes we write
simply g(x) in the place of g(z;6).
We need the following assumptions (A.1)-(A.3):

(A.1) g(x;0) is three times differentiable with respect to each coordi-
nates of 6 €@, and the third order derivative is continuous function of
(x, ) € [—=, t] XO, where @ is a compact set in R~.

(A.2) The associated power series
A(R)=1+a(l; 0)z+a(2; )2+ - - -
in not zero for |z|<1.

(A.3) The true parameter # belongs to the interior of 6, denoted by
Int (@), and 6 has infinitely many nonzero elements.

We commence to set down the following proposition. As for the
definition of the cumulant {-}, see Brillinger [4].

PROPOSITION 1. For the process {X(t)} which satisfies (2.2), we
have

@4) 5 ftlleam (b, o )<, for L p=1,--+, 15,

peentp=
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where cum (¢,,- - -, t,)=cumulant {X(¢,+%),- - -, X(t,+1), X(¢)}.
Proor. For p=1,---,15,
(2.6) cum {X(t,+1?),---, X(¢,+1), X(?)}

=cum |33 a(ji; Oe(t+t—3),++, 31 ald,; Oelt+t,—3,),
1= =

S1a(i; 0et—3) -
j=0

Noting (2.2), and that the joint cumulant is linear with respect to each
variables (Brillinger [4]), we see that (2.5) is equal to

@6) 31 aldii0):--ald,; 0a(i; 6) cum {e(t-+t—3), -, elt—1)} -

e ipd=

From the independence of e(t)’s, (2.6) can be written as
j;‘)a(tﬁrj 3 0)- - a(t,+3; 0)a(g; O)prr
Thus (2.4) is bounded by

@7 3 3 (hllettd; 0 el Okl ,  I=1-c,p.
770 by, tpz -4
The result follows from (2.2).

Remark 1. The condition (2.2) is stronger than Brillinger [3] type
mixing condition (2.4). Of course we can get this proposition under a
milder condition than (2.2).

3. Model and estimation

Suppose that a stretch, X(¢) (t=0,---, n—1) of the time series X{(¢)
is given. Let f..,(x) be a spectral density with (k+1)-dimensional un-
known parameter vector z(k)=(ds%(k), 0(k)), o*(k)>0, 6(k)=(0(k),---,
8,(k))', by which f,,(x) is parameterized as

a(k) h
2r

2 .
Fr) =2 () =2 f (e
2r
where f,,(0)=1.
A parameter vector z(k)=(d*(k), 8(k)’)’ gives the best approximation
few(x) to g(x) in the following sense.

(3.1 |, {8 fuot@) + 20 Jd
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= min " flog frun(e) +-22 da,
(k)€ g J— ff(k)( )

where 6,., is a compact set of R*¥*'. We can estimate g(k)i by (k)=
(6%(k), (k)Y which is a solution of

3.2) ,(,;)giegﬂg' {1og fran(@) + 2B f(f;)}
_ S {1og Freo(@) +2E)_ fi ,,()f)) }dx ,

where I,,(w)=(21m)“‘ nz_}l X(t) exp(—it:c)‘2 is the periodogram of X(%).
t=0

The estimator 7(k) is called the quasi-Gaussian maximum likelihood
estimator of z(k) since Gaussianity of {X(¢)} is not assumed (see Walker
[10], Dunsmuir and Hannan [5]).

In our analysis, the number k of parameters is not always fixed.
Therefore, in addition to (A.1)-(A.3) we put the following assumptions
(A.4)-(A.10):

(A.4) The number of the parameters k is in 1<k=<K,, where K,— o
and K,/vyn —0 as n—oo.

(A.5) The spectral density f..(x) is three times differentiable with re-
spect to (k) € @,,,;. The third order derivative is continuous function
of (x,7(k)) e [—=, ] X0O,.,, and, as a function of «€[—mr, =], the first
and second derivatives satisfy the Lipschitz condition of order 1.

(A.8) |hy(2)| is bounded and bounded away from zero for |z|<1.
(A.7) For any 1=k<K,, the kxk matrix

H =S' O hyr(2) !
¥ ) 00(k)o6(k)

g(x)dx ,

ok

is non-singular. If a symmetric kXk matrix A={a,;} satisfies that

é la,;| is bounded uniformly in r as k— oo we denote A €l(kXxk).
j=1

~1/2 * Oy (®) ! Ohger(2) ! 2
(A.8) For any 1<k<K,, H,, H:'* and S-, 20(k) 20(k) b g¥(x)dx
belong to l(kXx k).

(A.9) The sum ,é |W(r, 3, m)| is bounded uniformly in r as k— oo where
,m=1

W(r, 7, m)= S 0*hoa() !

-= 00,(k)0 ,(k)00.,(k) ‘ ()g(:c)dx .
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(A.10) For the 8 in (2.2),
| frao() —g(2)|=O(k %) , for all x€[—n, x].

Example 1. Suppose that the true spectral density g(x; 6) is param-
eterized such that

2

Ms

th,; €Xp (2Jx)

=0

th,; €XD (2J)

0

2
g(x; 0) o

2 1

8

J

#1,o=.l!z,o=1r 6=(d’, H1,1s M1y M2y M2,2,°° -y, satisfying >} jﬂlfll,j|<0°, PIWLE
i=o j=0

|#s,;]<oo. Also we assume that 3 g, ;2 and X 4, 2/ are not zero for
7=0 j=0

|2|<1. Of course noting Theorem 3.8.3 of Brillinger ([4], p. 78) we can
express the above g(x; ) in the form (2.1) satisfying (2.2). We choose
an autoregressive moving average spectral model

M

2
6y,; exp (1) ’

2 s’

j=0

]

Sfrao(@)= 022(71:)

M

; 0,,; exp (t5x)

0
0,0=0,,0=1, 7(k)=(d"(k), 1,1, *, O1,p) Op1,* =+, 03,0)'s P+q=k, where j%ﬁuzf
and gaz, ;%' are not zero for |2|<1. Further assume that éj*’[ﬁl, ;| and
i 7%16,,,;| are bounded as p=p(k) and g=g(k) tend to infinity such that
j;(ok)/q(k)—d. Then it is not so hard to show f.,(x) satisfies (A.4)-(A.10).

Now we shall present the following lemma without the proof be-
cause it is easy.

LemMMA 1. (i) If A,Bel(kxk), then ABel(kxk). (ii) Let C=
{C.,} be a kxk matriz im which each C,; is at most of an order O.
If Lel(kxk), then any element in CL is at most of the order O.

4. Asymptotic properties of the estimated mean square error

We can obtain a predictor X(t) by fitting the spectral density JLeao(2),
and the mean square error is

E | X(t)—-X(¢)P

= [2_17{ Si f?,f,a(;:)z;) dx exp {-21-7-:— S_x log f—‘;]-’i’;—;cldx} —1]02-{—02

(see Grenander and Rosenblatt [6], p. 261). Although X‘(t) can not be
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directly applied in practice, as it has an infinite series expansion in time
domain, we can measure the goodness of the estimated spectral model
Sfiw(®) by

@D Dl =[O exp (5| tog L8 ] 1

Lian(2) 2r g(x
:%{S_‘ hiﬁi)w) dm} exp 1517—; S_x log -%‘—’E’g—)dx} —-1.

PROPOSITION 2. Assume (A.1)-(A.9). Then

(42) Dlfiwr, 6)=Dllhasr, 9)+ 5 (000)— 800 H(G(R)—00)

X eXp {_1— S log Mldx} +lower order terms,

2 9(x)
where “lower order terms” means stochastically lower order terms as
n—oco compared with the second term in the right-hand side of (4.2)
uniformly in k.

Proor. By the definition of 4(k), (A.3) and (A.6), noting that (k)
is independent of ¢*(k), we have

* Ohya() -
S-. 26(k) lamg(x)dx 0

w?—k) exp {% S; log —}"—;’E’T()x)—dx}

[i¢2]

Therefore by Taylor expansion of the second equation of (4.1) with
respect to (k) and noting (A.5) and (A.9) we have this proposition.

From Proposition 2 we can measure the goodness of f:u,(x), ne-
glecting the lower order terms, by

4.3) M(fiw>, 9)=Dlhya>, 9) +%(5(’6)—Q(k))’Hk(é(k)—Q(k))
Py () dx}
g(x)

instead of D(f:ix,g). The first term on the right-hand side of (4.3)
represents the bias between the spectral density f..,(x) and the true
spectral density g(x). The second term represents the variance of esti-

X exp {—21— S‘ log
7T -z

mation. To investigate the asymptotic behavior of é(k) we shall pre-
pare the following lemma, which is essentially due to Grenander and
Rosenblatt [6].
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LEMMA 2. Let ¢(x) be a kX1 vector of functions on [—r, n] each of
which satisfies the Lipschitz condition of order 1, and ¢(x)=¢(—2x). Then,
under the assumptions (A.1l) and (A.2), we have

nE (| 6@ @@ —g@ds} || s E@—g@)ds]
=4 | @ o@rds+s | p@p@ads

x| p(ao(z)dz-+0(og my/m)

where ¢(x) stands for the tramspose of the vector ¢(x), and O((log n)*/n)
is a kxXk matrixz in which each element is (log n)*/n in order.

Now we introduce the following notations for simplicity ;

‘ Fhor(®) ! B(x; 6(k))= Ohpoy(®) ! Opir(2) ! .

A(x; 0(k))=W ' 06(k) oo(k)’

Using Lemma 2 we have the following theorem.

THEOREM 1. Assume (A.1)-(A.9). Then

i —oy=— i+ | Ll | (1) g+ 0,n7

where O, (n~") means a k dimensional vector whose elements are at most
of order n~! in probability.

Proor. By the definition of é(k), (A.3) and (A.6), noting that 4(k)
is independent of o*(k), we have

(4.4) S“ —E—)—-hd(k,(x)“lﬂ L(x)dx=0, for sufficiently large = .
- 00(k) F1e))

Then (4.4) can be written as

(4.5) Raol)"! \ A 5(k))(é(k)—g(k))] L(z)dz=0,

V- =
-= L 00(k)
where 5(k)=Q(k)+l(é(k)—Q(k)) and 1 is a bounded kxk matrix. Also by
the definition of #(k) we have

" 0 -1 _
(4.6) S_" Whom(w) |£(k)g(x)dw—0 .

Therefore (4.5) and (4.6) yields

d—ot=—[|" Atw; by Lwiz] " |" Pl | (1)~ glada
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Putting ¢(x)=(0h.u(x)~!/06(k)) |y in Lemma 2, and noting (A.8), we have

" Shw(@) _(* Sha(@) _
S_, a6(k) ‘ml"(”)dx‘s_,*5;(76)——|g(k)g(w)dw+0p(1/~/n).

Then we have é(k)=Q(k)+Op(1N'ﬁ). Therefore 6(k)=08(k)+0,(1/v 7).
Since the derivative of A(x; 6(k)) satisfies (A.9), we have

i —o=~[|" A atno@rda) || P8 (1o)—gteds

+o,aimyV, || Pt | (@)oo

where V, €l(kxk), and O,(1/4/n) means a scalar quantity which is at
most of order in probability 1/4/%. This completes the proof.

r -1
Using Lemma 2 and Theorem 1 and noting S Oho (@)™

- of(k) | g(k)g(x)dw

=0, we have the following proposition.

PROPOSITION 3. Assume (A.1)-(A.9). Then
n E [6(k)—8(k))[0(k) — 8(k)]'
=H,;1[47r S_ B(x; 0(k))g(x)*dz+O0((log 'n)z/n)] H'4+01/y7) .

Remark 2. Note that the covariance matrix of 4(k)—6(k) is inde-
pendent of the cumulant «,.

PROPOSITION 4. Assume (A.1)-(A.10). Then
| B: 600)@rde =29 H+06) .
PROOF. We can rewrite
He={" Aw; 000)f@)ot | Aw: 000)(0(@)—Fol@)da
Noting (A.10) we have
Hy=\" A@; 00k) fuo@)da+0(c™) .

Similarly we have

| B@: 0Ug(@ydz

= Si, B(z; Q(k))f;ck>(x)2dx+g x B(z; 0(k))(g(x) —fe(x))dz
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={" B 00 fuaoyda+00e) .
Notice that

A@; 0(k)hyao(®) =B ; 00k) hacer()— _—_a;gzi)’;g&f)@ :

Since 6(k) is independent of the innovation we have

* 9 log () —
S . “aackyeky =0

Therefore we have
@) | Aw: 0@ =" B@; 000)hu(z)ds
Multiplying (4.7) by {d*(k)/(2r)}?, we have this proposition.
THEOREM 2. Assume (A.1)-(A.10). Then
(4.8) E [(n/4z) H(6(k)— 8(k)) (6(k) — 6(k)) Hi"")
= <£22-(11:—)>Ik+0(k")+0(1/¢%) X

where I, is the kXk unit matriz.

ProOOF. By Proposition 3, (4.8) is equal to

@9 H||" B 0k)g@)ds-+0((og nyjm) | Hi
+H0Q ) H .

Remembering Proposition 4 and Lemma 1 together with (A.8) we have
this theorem.
Theorem 2 implies the following corollary.

COROLLARY 1.
E [{— (000 — 80k) H 60k~ 6(0) | =2®) 1 o5 +0(1/yT) .
rk 2r

Now let ¢(x)=(¢y(x),- - -, ¢u(x)) be a vector of continuous functions
such that ¢(x)=¢(—x). Putting F,:Si ¢(x)(L(x)—g(x))dx, and using

arguments similar to that of Theorem 4.1 in Brillinger [3] under the
same condition (2.4) as in Proposition 1, we have the following lemma.

LEMMA 3. Under the condition (2.4),
cumulant {F ,- -, F; }=0(n"""),  p=1,...,8,
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where {jly""jp}c{li"°,k}-

For the notational convenience we put Y(k)=(Yi,---,YV)=(W"n/
(V'Z o(l))) Hi(6(k)— (k).

LEMMA 4. Assume (A.1)~(A.10). Then

B |ty 00 —000) k) —00) — k]

=48+ 12k + K {O(k~*) +O(1/v/ )} .

Proor. Consider

(4.10) B i 000000y H(Gk) —0to)
=2(3%)
=j é} la(.?l’ J2)+ - 8(dn, jB)E(le'°'Yjs) ’
where
L. 1, J1=Js
6(.71’ .72):{ . .
0, N#F Tz

It is known that
(4.11) E(Y,---Y, )= cum (Y,; li€v)---cum(Y,,; l,€v,),

where the summation extends over all partitions (v,:--,v,), p=1,---, 8,
of (ji,+++,J)). Here, cum(Y,; l,€v) denotes the joint cumulant of
{Y,}yev,. From Lemma 3, we can find the main order terms on the
right-hand side of (4.11). They are the terms of the following type,

(4.12) cum (Y,P ") Y,P (2)) cum (Y,P(a) , Y,P (‘)) cum (Y,P o’ Y, - (6))

Xecum (Y, say ,

P’ Yfp(s)) ’

{=cum (P(1), P(2)) cum (P(3), P(4)) cum (P(5), P(6))
Xcum (P(7), P@8))} ,

which contribute mainly in the sum (4.10). Here P(-) denotes the

partition of (1,--.,8). Therefore the main order terms in (4.10) can
be written as
(4.13) ' 23(31,32) 8(dr, Js) 33 cum (P(1), P(2))

-’1

..cum (P(7), P(8)) .
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By Theorem 2 we have
(4.14) cum (P(r), P(5))=d(r, 5)+O0(k~")+0(1/vy ) .

Thus if we consider (4.14) and all partitions in the second sum in (4.13),
we can show that (4.13) is equal to

(4.15) k' 412k + 44K+ 48k + K {O(k~#)+ O(1/¥/ W)} .

In the same way we have

(4.16) E { 50 (6006 —8(0k)Y Hi(O(k)— ()}
=K+ 6k*+-8k+EH{O(k~ )+ 01 /vy )} .

(4.17) E|sn- sy (0~ 009 (G0~ 6(e))}
=K+ 2+ R{O(6™) +O(L [T} .
(4.18) E|onr oy 00— 009 LGB ~ (0

—k+k{0(k"’)+0(1/1/n)} .
Combining (4.15)-(4.18) we have this lemma.

The result of Lemma 4 means that if k,— o0 as n— oo and k,<K,,
then

p—lim (0(k)— )y Hu(@(k)—g(e))=1,  for k,<k<K,.

202(16)10
Therefore, M(f:«,, g) behaves like to

_k 1 f(k)(x)
Rin, =2 exp {2 | tog 26 daf 4 Dihan, )

that is,
PROPOSITION 5. Assume (A.1)-(A.10). For k,<k<K,, such that

k,— oo,

p—Tim M(fiw, 9)/B(n, k)=1 .

DEFINITION 1. A sequence {k}} is defined by

R(n, k:‘)zérklir; R(n, k) .

Of course we can see kf— oo as n—co.

THEOREM 3. Assume (A.1)-(A.10). Then
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p—lim { max |(M(fiu, g)/R(n, k))—1[}=0 .
noo  15ksK,

Proor. We shall evaluate
419 3 E{(M(fu, 9)/R(n, k)—1}*

B, B g 00— 000y b~ i)~k

o 2 e ]

By the definition of k* we can see
(4.20) (log EX)/{nD(f.«, 9)} =0(1) for all 1<k=<log k* .

Using Lemma 4 and (A.10) we have

“421) X E {

logkksksK,

257y 00 — 0 H (000 —000)) - B’

1 Jra(®) 4
[exp {2z S_‘l e dm” / {(nR(n, k)}
= 32 {1257 +48k7+O(k~*)+O(1/y )} 1+ Ok #)} .

logkksksK,

Since >1, K,=o(4/7n) and log k¥— oo, (4.21) tends to zero as n— oo.
Also we have

CE { S

[exp { 21n [ togL: ;{“f’ dx} ]'/ {(nR(n, k)}*
= X {128+ 48K+ Ok~ + Ok v/ 7))

1sk<log k¥

[exp {217: S_ log %dw}]‘/{nmﬂ% .

By (4.20) and (A.10), (4.22) is dominated by
(4.23) 3 {12k*+48k+O(k~**)+-O(k!/yw)} {1+ O0(k~*)} [(log k})*

%*
1sk<log k¥

(80— 000 H(600)— 000 — ]

which tends to zero as n—oo. Therefore (4.19) tends to zero as n—
oco. This completes the proof.

Using Theorem 3 the following corollary is easily shown.

COROLLARY 2. For any integer valued random variable k, and for
any >0,
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lim P (M(f., 9)/R(n, k¥)21—¢)=1.
n—oo

Define an asymptotically efficient order selection extending the con-
cept of Shibata [8] in the case of autoregressive model.

DEFINITION 2. We call an order selection k asymptotically efficient
if

p—lim M(fue, 0)/Rn, k1) =1 .

5. Asymptotically efficient order selection
Akaike [2] proposed a criterion AIC (Akaike’s information criterion)
(5.1) AIC (k)= —2log (maximum likelihood)+ 2k ,

where k is the number of independently adjusted parameters with in
the model. A selection k is defined as the k& which minimizes AIC (k).
Of course this criterion has been proposed for a Gaussian ARMA model,
but it can be applied for our generalized situation.

Remembering (3.2),

I(x)
X (k)/2m)h;q(x) Jm:;imdx

0 * 2 .
W S_x {log (¢’ (k)hiax()/27) + (

Thus we have

(5.2) 5= h{:'(j(”;) de .

Also we define the following value

Then the AIC for f..,(x) can be written as
(5.4) AIC (k+1)=mnlog o'(k)+2k .
Minimizing AIC (k+1) is equivalent to minimizing

(.5) n exp {l AIC (k+1)} = na'(k) exp2E. .
n n
By (5.3) we have

(5.6) = | s@f@iz=1,
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and

exp { 217c S_x RE "2’(;’:) dx} =d'(k)/a* .

Thus we have the following proposition.

PROPOSITION 6. Assume (A.1)-(A.3), (A.5) and (A.6). Then
D(f.wr» 9)={d*(k)—d*}/d* .

Now we define

2 i n(x)
k)= S = hya() @

Remark 3. We can see

(5.7 nexp (2k/n)d(k)/s*
=nR(n, k)+n{exp (2k/n)—1}{(o*(k) —o*)/s*}
+ {k—n(s'(k)—a*(k))/o*} +n(s*(k) — o'(k))/o*

enlexp (3)—t—klowp (5|1 og Ly Shas) 1] o]

+n.

Since

lim max n[exp(iﬁc) l—k{exp 1 S-,l f"”’(x)dx>+1}/:|

nooo 1SkSK, 2r ( )
[ R, ) =0,

we shall show that the second, third and fourth terms on the right-
hand side of (5.7) are negligible with respect to nR(n, k).

LEMMA 5. Assume (A.1)-(A.10). Then
(5.8) p—lim max {k —n(s¥(k)—a'(k))/a*} [ {nR(n, k)} =0 .

n—w 15ks
ProOOF. By Proposition 6 and (A.10) we have
(5.9) a(k)y—a'=0(k"*) .
Notice that
(5.10) || s@L@ds="_s@o@ds+0,1/v7),

(6.11) 0(k)=0(k)+0,(1/V7) .
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If we apply the Taylor theorem we have
(56.12) {s*(k)—do'(k)}/o*

_ 1 a0 (7 Phas(®) ! A(k) —
=g O~y || The0 | 1 @a(ite) o)

+lower order terms.

Noting (5.9)-(5.12) and using an argument essentially the same as that
of Theorem 3 we have (5.8).

This lemma means that the third term on the right-hand side of
(56.7) is negligible with respect to nR(n, k).

LEMMA 6. Assume (A.1)-(A.10). Then
(5.13) p—lim max n{exp (2k/n)—1} {o*(k)—a*} | {nR(n, k)} =0 .

n—oo 15k

PrROOF. Notice that n{exp (2k/n)—1}=0(k), and that
|a*(k) —o*|<|a%(k) — 8*(k) | +|s*(k) — &*(K) | + |2’ (k) — o] .
By Lemma 5 we have

p—lim max k(&z(k) —s'(k)/{nR(n, k)} =0 .

n—oo 15k
Also by Proposition 6
lim max klaz(k)— @|/{nR(n, k)}

n—oo 15k

Shm max k|02(k) d|{nD(f., 9)} =0 .

n—oo 1Sk

While we have
G.14)  E (Ms')—o00)V=E [k |* {()—g@)ha@)ds] .

By Lemma 2, we see that the order of (5.14) is O(k*/n). Thus 1.<,kzs"x
E {k(s'(k)—(B)}}/ {nB(n, k)}* = P O(kz/n)/ {nR(n, k)}'= P 0(162/%)/’102
—0. This completes the proof

LEMMA 7. Assume (A.1)-(A.6) and (A.10). Then

D(fr>» g)=-41; S; {f-‘i’ﬂw—)ﬂrdm—l—lower order terms.

Jeao(x)
ProOF. Remembering (A.10) we can write
5.15 1 f(k)(x) — g(x)
616) log L= —log [ 14205 1]
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f, (k(::;) +14+= [ ﬂ(,fj(C)) 1]2+lower order terms.

1 {~ g()
Noting — dx=1, and that
2r S = fro(t)

exp {2—1” S; log %dw}

=exp {41r St [ ﬂ-i(:a)—l]zdx+lower order terms}

— 1 {* [ fa(@)—g(®) ]
1+ G dr+1 der t ,
ym S_”[ F®) ] x+lower order terms

we have this lemma.

Now we shall show that the fourth term in (5.7) is negligible with

respect to nR(n, k). Since the behavior of k is determined only by the
differences of (5.7) it is sufficient to show that n{si(k)—d*(k)—(s’(k})—
a(k¥)}, k=1,---, K,, are uniformly negligible. To do so we shall pre-
pare the following lemma.

LEMMA 8. Assume (A.1)-(A.10). Then

p—lim max n
n—o 15ksSK

(50— 00 5~ )| [ tnR(m, k=0 .

a'(k)
Proor. We evaluate the following

(5.16) é E {n(s'(k)— (k) (c'(k) —o")}’[d*a*(k)nR(n, k)}*

Kp x 2
=S E | b (L@—g@)Ma] @H)-o

{o'g"(kmR(n, k)}* .

By Lemma 2 and Proposition 6, (5.16) can be written as
Kn

(5.17) 35 O(m)D(fuw» 9V {nE(n, )} .
Since R(n, k)*=D(f.a, 9)% (56.17) is dominated by

Zﬂ O(nH)=0(K,/n)—0 , as n—oo .

This completes the proof.
LEMMA 9. Assume (A.1)-(A.10). Then
p—lim max nls’(k)— a'(k)— (s(k}¥)—d*(kX))|/{nR(n, k)} =0 .

n—oo 15k
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ProOF. By Lemma 8 if we show that
n { si(k)—d'(k) __ s'(k¥)—d'(k¥) }

a*(k) (k)
n

~2r S {Fral@) ™ = Faen(@) "} (L (@) —g())dew

is negligible with respect to mR(n, k), then the proof is completed.
Now we shall evaluate the following

(5.18) B[] (@) ' fap@) 1 @) —g@)Ms]

Considering the identity (4.11) and Lemma 3, the main contributive
terms in (5.18) are typically written as

6.19)  [eum | (@)~ Frap(@) ) Lix) gl
[ @)= Faptar )@@ —o@)da} |
= {4 | (o)~ Frap@) o(wyds| [n’

+lower order terms.

Noting the formula (a+b)*<2(a’+b%, the main order term in (5.19) is
not greater than

(5.20) (8 | (Fwla)y —g(e)yo@rds
187 [T (frap(®)'—g(@)o(wyda] n.

Similarly (5.20) is not greater than

2 7 2

(5.21) 2 (Fey— (o) Yg(@rds]
£ 2
+{|" Cap@—g@)yo(erds] | .
Therefore the proof is complete if we can show that
x 2
(5.22) 53 wl]” (@) —g@)Yorda} (R b}
1sksK, —-x

goes to zero. In fact (5.22) is bounded by

629 3 || Ce@—s@yitwerds [ Dfw, 0

1sk<log ¥
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+ 5 A Gla)—g@)an(Vdz] [16FD(Fn o))

log k¥<k<K,

Noting Lemma 7 and (log kX< D(f.w, 9)* for all 1=<k<logk}, the
first term in (5.23) is bounded by

(5.24) > 0()/(log kf)*—0 as n—oo,

1sk<log k¥
Noting Lemma 7 the second term in (5.23) is bounded by
> OQ)/6k*—0 as n—oo .

log k¥ SkSK,
This completes the proof.
Using these lemmas we have the following theorem.
THEOREM 4. Assume (A.1)-(A.10). Then
p—lim M(f:i, 9)/R(n, k3)=1 .
That is, the order selection k is ‘asymptotically efficient in the sense of
Definition 2.
PROOF. Remembering Lemmas 5-9 and noting that
{n exp (2k/m)}*(k) < {n exp @k¥/m)}6'(R) ,
we have for any >0,
lim P (R(n, k)/R(n, k¥)<1+¢)=1.

Of course by the definition of k} we have R(n, IZ)/R(n, k¥)=1. Thus
p—lim R(n, IZ)/R(n, k¥)=1. By Theorem 3 we have this theorem.

6. Concluding remarks

Needless to say all results in the previous sections can be applied
for the fitting of ARMA spectral density model f..,(x) described in

Example 1. Theorem 4 means that the order selection k, minimizing
Akaike’s information criterion (5.4) constructed by Gaussian likelihood,
is asymptotically efficient although Gaussianity of {X(¢)} is not assumed.

Consider an order selection k> which attains the minimum of
(6.1) {nexp (ak/n)}o¥(k) , for some a>0, with respect to k.

Then using an argument essentially the same as that of Shibata [8] we
can show that £ is asymptotically efficient if and only if ¢=2 under
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the assumptions (A.1)-(A.10).

Acknowledgement

The author wishes to thank the referee, Professor Y. Fujikoshi
and Mr. R. Shibata for their many profound comments.

HIROSHIMA UNIVERSITY

REFERENCES

[1] Akaike, H. (1970). Statistical predictor identification, Ann. Inst. Statist. Math., 22,
203-217.

[2] Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans.
Automat. Contr., AC-19, 716-723.

[3] Brillinger, D. R. (1969). Asymptotic properties of spectral estimates of second order,
Biometrika, 56, 375-390.

[4]1 Brillinger, D. R. (1975). Time Series: Data Analysis and Theory, Holt, Rinehart and
Winston, New York.

[5] Dunsmuir, W. and Hannan, E. J. (1976). Vector linear time series models, Adv.
Appl. Prob., 8, 339-364.

[6] Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis of Stationary Time Series,
Wiley, New York.

[7] Hannan, E. J. (1970). Muitiple Time Series, Wiley, New York.

[8] Shibata, R. (1980). Asymptotically efficient selection of the order of the model for
estimating parameters of a linear process, Ann. Statist., 8, 147-164.

[9] Taniguchi, M. (1979). On estimation of parameters of Gaussian stationary processes,
J. Appl. Prob., 16, 575-591.

[10] Walker, A. M. (1964). Asymptotic properties of least-squares estimates of parameters
of the spectrum of a stationary non-deterministic time-series, J. Aust. Math. Soc., 4,
363-384.



