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Abstract

The effect of regularly missed observations on the estimation of
parameters of an autoregressive (AR) process is investigated by using
the frequency domain method. For first order AR processes, numerical
results are shown to see a behavior of variances of the estimate due
to the missed observations. In some cases, we can positively utilize
the concept of missed observations to decrease the variances if the
number of observations is fixed but time instants at with the obser-
vations are made can be changed.

1. Introduction

The problem of time series with missed observations was first
treated by Jones [5] where the instants of missed observations were
assumed to be periodic and their effect on spectral analysis was in-
vestigated.

After this work, several papers concerning this aspect, for example,
[21, [31, [6], [7], [8], [10], have been published, but all these papers were
concerned with the analysis in the frequency domain, or in other words,
spectral analysis based on variously modified Blackman-Tukey procedures.

Recently, several works have been done concerning the effects of
missed observations on the estimates of parametric models. For ex-
ample, the author reported one result in [9] where the relation between
fitting autoregression and periodogram, an important quantity in the
frequency domain analysis, is presented and utilized to derive the asymp-
totic error covariance matrix of the estimate of the parameters of an
autoregressive (AR) process with randomly missed observations, the
situation treated by Scheinok [10].

In this paper, using the same technique, we calculate the asymptotic
error covariance matrix for the situation with regularly missed obser-
vations, treated by Jones [5].
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2. Regularly missed observations

Let a zero-mean stationary time series {x,} be sampled in groups
of a consecutive time instants separated by 8 missed observations (a>
B). This situation may occur in the radar studies of the moon surface
since during the reception of the radar echo, one must systematically
cease the signal transmission so that there are time intervals without
the reflections of the signals [8].

Let

1 if x, is read,
a,=
0 if z, is not read.

Hence, {a,} is a sequence with period a+p8. According to [5], we define
the limit of ratio of N, the total sample size, to the number of pairs

available for estimating 7.=E [z,2,,,] by

N

N—|k|

Qg k)
t=1

(1) c.=lim

N—ooo

Then ¢,=c_, and {c.}i=, is also a sequence with period e+8. The values
of ¢, during one period are as follows; ¢,=(a+8)/(a—k) (0SEZH), c;i=
(a+P)/(a—B) (B=k=a) and c,=(a+p)/(k—p) (ask=<a+p). It is obvious
that the consistent estimator for r, is given by

n 1 N—|k}
(2) "'k=—l'v~ § (%0 0 PERPAT 5! TR PARR

By defining the modified periodogram as

1 N N .
4 p— — —
(3) Ij(s) =N v§=1: F§=1} a,a,.c, 2,7, exp[—i(v—p)s],

#, is expressed in terms of this periodogram as
(4) &,,:S" Ti(s) exp (iks)ds .

From (3) it is easily shown that

(5) E [Li(s)]=E [Ix(s)]+ O(N ")

where I,(s) is the usual periodogram without missed observations. The
term of order N~! in (5) arises from the fact that <ck—N Ng‘;la,amk,)

is of order N~! but as is readily seen later, this term is of no impor-
tance for the ensuing analysis.



FITTING AUTOREGRESSION 395

3. Parameter estimation of an AR process

Let {x,} be generated by a Gaussian stationary pth order AR
process

(6) z,—bx,_—+—bx,_,=u,

with E[«,]=0 and E[w,u,]=0¢%,,. When the parameter estimation pro-
cedure is solving the well-known Yule-Walker equations (c.f. Akaike [1])
with the estimated #,’s in the place of true r,’s, it is the question how
the asymptotic variances and covariances of the estimates for the un-
known parameters b, b,,---,b, and ¢* are affected by the above men-
tioned missed observations.

These estimators 51,- ., 3p and ¢* are obviously consistent and noting
the relations (4), (5), the basic formula in [9] remains valid with replac-
ing I.(s) by Ij(s) (cf. [9], (12)). Thus the asymptotic covariance matrix

of the estimation error 4b= (El— by, .-, 3,,— b,)" is given by
(7) (RE(464671R"),,=\" |" B@)B) Cov Ii(s), Li(t)]
X exp [i(ms+nt)|dsdt+O(N?)

where (R)i,ké(i, k)th element of R=7r,_, and B(s) = i‘, (—b,) exp (—1ks)
k=0

(—b,=1). The effect of the second term in (5) is absorbed in O(N-?)
term by the similar argument to derive [9], (12). Hence, it is suffi-
cient to know Cov [Ii(s), Ii(t)] for calculating (7).

According to Jones [5], a,a.c,_, in (3) is periodic so that it has the
following two-dimensional representation ;

(8) a,apc,_,,=k2j H, ; exp (—wa, +1pd;)

where 2,=2rk/(a+8) and k, j=—(a+8—1)/2, —(a+B—3)/2, -+, (a+8—
1)/2 if a+B is odd, or —(a+8—2)/2, —(a+B—4)/2, -, (@a+p)/2 if a+p
is even. In general, H, ; is very complicated as indicated in [4], p. 458
but for =1 it reduces to H, =38, and H, ;=(a '—8;,—8,,)/(a—1) (k+J).
Substituting (8) into (3) and introducing the discrete Fourier transform

(9) Tu(&) 23 @, exp (—its)
t=1
Ij(s) is reexpressed as

’ 1
(10) IN(S)=W% He; Jx(s+2)In(—s—12;) .

Since by the Gaussian assumption Jy(s) is also Gaussian, it easily fol-
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lows that
(11)  Cov [Ii(s), Li(t)]
1
XAE [Jx(8+ )yt + 2)] E [Jy(—s— AT n(—t—2;)]
+E [Jx(s+2)x(—t—2,)] E [Jx(—s—2)Jx(t+2)]} .

On the other hand, from Brillinger [4], p. 93, it follows that

(12) E [Ju(8)Jx(t)] =27 f(s)Dx(s+1t)+O(1)
where we define

as) f@2 5= 3 ruexp (—iks)
(14) | DN(s)éé exp (—iks) ,

respectively. The second term of (12) is uniform in s, ¢ so that its con-
tribution to the integrals below can be neglected. From (11), (12) we
have

(15)  Cov [Ii(s), Ix®)] _

=1 > Hy Hy, y[f(s+2)f(t+2;)Dy(s+t+ 2+ A)
N? &,jw, 5

X Dy(—8—t—2;—2;)+ f(s+A) S (t+ A)

X DN(S—t+Zk—lj')DN(—S+t—lj-I-Zkz)] .
Substituting this into (7) and using (14), the integral due to the first

term in the square bracket of (15) is written as

16) 5 3 |7 Bose+1) exp [—istg—q'—m)ds

¢=1¢'=1

-

x|" BOf(t+2,) exp [—itlg—q'—mldt
X exp [— A+ A)g+ 12,4+ 4,)d'] .
From the definition of B(s) and f(s), we readily obtain
an g B(s)f(s+2) exp [—is(v—m)]ds
=33 (= by)Tiomss 0X [ilr—m+ )] 26, ()

Hence, (16) reduces to
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N-1
(18) > 0,_n(2)0,-1(4;) €XD [ —UAx+ )]
N—v
X qu exp [—t(A+Av— A= 2;)4]

+ _Zlu\:“ 0,_(2)0,_(2;) exp [— (A + Ap)v]

y=-

N
X >} exp[—(Ac+Aw—2;—2;)q]

g=1—v

= 31 0, n(1)0._n(,) €xp [—i(A+ Ae)]

y=-—00

XDN(lk-l-Zk/—Zj—Zj;)-}-O(l)

where we use the fact that |@,(4;)| is exponentially decreasing. It is
well known that

N for s=0 (mod 2r)
(19) D)= ,
0@) otherwise .

Thus, the value of (18) is of order N if and only if A+2A.—2,—2,=0
(mod 27). Since —r<2,<r if a+p is odd and —z <4, <r if ¢+ is even,
it follows that |A,4+4.—2;—2;|<4nr regardless of the parity of a+p3.
Hence, from the definition of i,, the above possibilities are k4+k'—j5—7'
:0, i(a—{—,@).

In a similar way, integral due to the second term in the square
bracket in (15) is calculated as

(20) 31 6. n()8-s-alh) €xD [—i(h— )]

X Do — 2+ Ap+ 2e—2,)+0(1) .
This is also of order N if and only if k+k'—7j—35'=0, +(a+p). Thus,
the asymptotic value of (7) is given by

@) NS HyHey 3 {6.408.4()

kb= 3 st )
X exp [— U+ A )] +0,_n(4)0_,_n(A) €xp [ — U (A —2;)v]} .
4. A simple example

To obtain the explicit values of (21), let {x,} be a first order AR
process with r,=b"*' (|b[<1). For m=n=1, (17) is

0,-(2)={r,_, exp (—12)—br.} exp (iv2) .

From this, the infinite summation in (21) is given by
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Zpr g b?
(2 —b") (2, —b?) T zzzi - +(z—1)(2,—1) FE—
+ (=) (e —1) 22t 4 bz —1) (20— 1)
1 - bzzk,_j,
bz, _p
+ (Zk - 1) (zk' — bz) 1— b;z:_k,

with z,=exp (—14;). Numerical calculations were performed for various
values of a, b with 8=1. To see the effect of missed observations, we
compare N E [(4b)*].is. With the error variance from data of length 2N/3
without missed observations, since for a=2, =1, the number of the
net observations is 2N/3. The latter is [1]

(22) §- N E [(4b)]oons, =1 " .

Table 1 shows these values for 5=0.1,0.2,--.,0.9. It is interesting to
note that as the correlation of the data becomes strong, that is |b|>
0.8, the degrading effect of regularly missed observations disappears.

Table 1. Comparison of the variances with and without missed observations

6] | NE[(&)laws. | NE(BFleone. | 0] | NE[(DF]miss. | N E [(dD)]eon.
0.1 2.940 1.485 0.6 1.289 0.960
0.2 2.765 1.440 0.7 0.884 0.765
0.3 2.486 1.365 0.8 0.527 0.540
0.4 2.126 1.250 0.9 0.231 0.285
0.5 1.714 1.125

Table 2 shows the behavior of N E [(4b)}]...... for increasing values
of @ with =1 fixed. The convergence to 1—b* is apparent but con-
verging rates are fairly different. That is, for small |b], the rate is
high whereas for larger |b| near 1, the convergence is considerably slow.
This phenomenon also occurs in the case of randomly missed observa-
tions [9] and can be explained as follows. Since the covariance esti-
mator (2) is based on filling the missed observation with zero, a priori
mean, this estimate does not make any use of the information about
the data correlation. Thus, the degrading effect vanishes promptly as
a— oo in the white noise case whereas it is still non-neglegible for the
data with strong correlation. Also we can note a quite curious phenom-
enon in Table 2. That is, at b=0.9, the variance for a=2 is smaller
than those for «=10, 20, 30! At present there is no explanation for
this counterintuitive result. Perhaps, this is due to the suboptimality
of the present estimation procedure and the maximum likelihood esti-
mate may not possess such a property.
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Table 2. Convergent behavior of N E [(40)]miss.
for increasing a

|5] a=10 a=20 a=30 a=oo
0.1 1.222 1.093 1.053 0.990
0.2 1.181 1.063 1.022 0.960
0.3 1.129 1.014 0.978 0.910
0.4 1.055 0.944 0.908 0.840
0.5 0.959 0.853 0.818 0.750
0.6 0.839 0.740 0.707 0.640
0.7 0.689 0.607 0.575 0.510
0.8 0.501 0.447 0.421 0.360
0.9 0.266 0.252 0.239 0.190
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To see the validity of the theoretical results, in Table 3 we present
simulation results where empirical variances are obtained by averaging
squares of estimation errors over M sets of data each of N length. We
can see a fairly good agreement between the theoretical and experi-

mental results.

Table 3. The simulation results to show the validity of
the theoretical analysis

Number of Number of N E [(45)]miss. By simula-
a data N data sets M by theory tions
a=2 0.527 a=2 0.576
0.8 1000 500
00 a=10 0.501 a=10 0.493
a=2 0.231 a=2 0.262
0.9 1000 500 a=10 0.266 a=10 0.277
a=o 0.190 a=o0 0.202
a=2 0.231 a=2 0.262
. 100
0.9 0 900 a=10 0.266 a=10 0.282
a=2 0.108 a=2 0.134
. 500
0.95 1000 a=10 0.134 a=10 0.147

5. Conclusion

At first sight we are apt to think negative effects of missed ob-
servations. But from the above results, in some cases, we can posi-
tively utilize the concept of missed observations to improve the per-
formance of the estimate if the number of observations is fixed but
time instants at which the observations are made can be changed.
For example, for a first order AR process with $=0.9, about 209 re-
duction of the variance is gained if we allpcate the total observations
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of length, say, N=500 over 750 instants to form regularly missed ob-
servations with a=2, g=1.
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