Ann. Inst. Statist. Math.
32 (1980), Part A, 377-385

THE MINIMUM PROBABILITY ON AN INTERVAL WHEN
THE MEAN AND VARIANCE ARE KNOWN

MORRIS SKIBINSKY

(Received June 6, 1978; revised June 18, 1980)

Abstract

This paper studies the minimum probability that distributions on
a closed, bounded, non-degenerate interval can assign to its open sub-
intervals when both the mean and variance are specified. It extends
to this case Selberg’s generalization of Tchebycheff’s inequality.

1. Selberg’s theorem
Let
J= [e, 8]

be a closed, bounded, non-degenerate interval. Denote by V,(g, ¢*) the
class of all probability measures on J having mean g and variance o
It is well known that

Vi(p, ¢%) is non-empty <= 0=d*=m, s(¢) ,
where for any numbers a, b, * we write
My, p(x)=(x—a)(b—ux) .
Moreover
a'=0 or m, (¢) < V,(y, ¢°) is singleton .
In [5] we studied in detail
(1.1) U (e, e)=max {P ([a, b]): P e V,(g, %)}

for all non-empty V,(g, ¢*) and each closed subinterval [a, b] of J. Here
we shall consider the minimum probability on open subintervals (a, b)
of J which these same measures may achieve. (The minimum on closed
subintervals is in general not attained). Thus for each open subinter-
val (a, b) of J, equivalently, for each pair of numbers a, b such that
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1.2) esa<b=g,
define
1.3) L{7(y, a*)=min {P ((a, b)): P e V,(g, )} .

For example, we have trivially that
Lf{,’z?([l, 0)=I(a,b)([1) y aéﬂéﬁ ’

where I denotes indicator function. The following theorem which shows
explicitly the form that the minimum probability function (1.3) must
assume was first proved by Selberg [4] with the real line (—oo, o) in
place of J. As is evident below, this change makes no difference in
the functional forms of the minimum probability since these forms do
not depend on the endpoints of J. Selberg’s results were rederived
by Karlin and Studden in [2], pp. 475-479 and by Kemperman [3], p.
121, to illustrate how their general methodologies for obtaining such
extrema might be applied. Isii [1], Theorems 1’ and 2’ (1 and 2) gives
sharp lower (upper) bounds for the probability of open (closed) subsets
of a bounded interval when the moments for an arbitrary Tchebycheft
system of order m on that interval are specified. These result in a
general methodology for deriving distributions of finite support which
attain these bounds. Particularized to m=2, the classical power func-
tion Tchebycheff system, and interval subsets, these will also yield the
theorem under consideration. In this connection, see also Theorem 2.1
and discussion p. 472 in [2]. We exhibit the theorem below with ar-
bitrary J as here specified. A trivial modification of the approach in
either [2] or [3] will suffice for proof which we delete. We use the
following notation. For a<c¢<b and any z let

(1'4) ma,c,b(w)zma’x [ma,c(x); mc,b(x)]
and let
(1.5) p=pla,b)=a or b according as u< or >(a+b)/2.

THEOREM 1A. For each open subinterval (a,b) of J and ¢*>0,

(F_P)z/[az‘f‘(#—P)z] ’ P =My, v, o(12)
LE[,’»)(#: ‘72) = 4[mu, D(P) - ‘72]/(b - a)z ’ Mg, a+)72, b(#) <d< My, b(#)
0, Mg, () <=M, (1)

The conditions under which the three expressions for the minimum
probability hold may also be viewed as restrictions on the endpoints of
the open subinterval (a, b) for arbitrary p, o* such that
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(1.6) 0<a*sm, () .
As in [5], let
2
(L1.7) (@) =c, @) =ph——,  wEp.
p—x

See Lemmas 2.1, 2.2 and Figure 2.1 of [5] for simple properties of this
function. Theorem 1A may be restated with conditions given in terms
of z.

THEOREM 1B. Let p, o* satisfy (1.6), then for each open subinterval
(a,b) of J

(p—o)[la*+(e—0)], ast((a+b)/2)<b
L)Xy, 6)=1 4[m, (¢)—d*]/(b—a)*, 7(b)<(a+b)/2<(a)<b
0, otherwise .

As a conceptual convenience let us identify the open subintervals
(a, b) of J one-one with the points (a, b) of the partly open triangle

T'={(a, b): a<a<b<p}.

The conditions of Theorem 1B may then be viewed as a partition of 7%
into 3 sets parametrized by g, ¢ which satisfy (1.6).

The equivalence of respective conditions under Theorems 1A and B
is easily established. Let

R=R(y, 6)={(a,b) e T": a<z((a+b)/2)<b},
S=8(y, ¢*)={(a,b) e T°: =(b)<(a+b)/2<r(a)=b} .

Intersecting R with sets in the T partition whose members, T,=T.(z),
1=1,2,.--,5, are respectively determined by the 5 relationships:

p=a; a<p<(@+b)/2; (a+b)2=p; (a+b)2<p<b; p=<b,
one finds
Rn(TWUT,uTs)=¢,

whereas

RNT,={a,b) e T": a=Zr((a+b)/2)<p} =R, , say ,

RnTi={(a,b)e T": p<c((a+b)/2)<b}=R,, say ,
so that

R=RUR,.

Note that since R,cT,, R,CT,, the function p defined by (1.5) which



380 MORRIS SKIBINSKY

appears in the first expression for the minimum probability is equal to
a or b according as (a, b) is in R, or K,. By (1.4)
0L ZE Mg, arorn,o(1t) & 0< P Z My, ainre(r) OF 0P < Miginrz,o(pt) -

The first condition on the right-hand side is equivalent to (a,b)¢€ R,,
the second, to (a, b) € R,. Hence the condition on the left-hand side is
equivalent to (e, b) ¢ R. Similarly,

ma,(a+b>/2,b(#)<02§ma,b(#) & (a,b)eS.
Finally, observe that
RUS={(a,b) e T": m, ()=} ={(a, b) € T": a=t(B), b=7(a)} .

A translation of Table 1 p. 475 in [2] to the notation and condi-
tions here employed and simple manipulation yields

THEOREM 2. Let p, o* satisfy (1.6). Let p and t be respectively de-
fined as in (1.5) and (1.7) and take c=(a+b)/2, then for each open sub-
interval

(a,b)cj A distribution on J which has mean g and variance ¢? and

such that assigns minimum probability to (a, b) is given by
support 0 (o)

a<t(c)<b

== s (p)—p #—p
robabilit
P V' o0 7(p)—p
support a c b
o) <e<tla)<b ity | 2B=E@=8) | Mp—0E0)=0) 2Ax—c)e(c)—a)

probability (b—a) 1- —ay b—ay

When meither condition holds (i.e. when the minimum probability is zero),
it will suffice to take the distribution specified for the first condition re-
placing p by p, where

o=a or =(B) according as a< or =7(8) .

For (a,b)cJ such that c¢=p, which can occur under the second
condition of the table, we interpret (z—c)r(c) to be equal to its limit
as ¢—yp, which is . Thus when ¢=g, the probabilities at @ and b in
the last row of the table are each equal to 2¢°/(b—a)*; the probability
at ¢, to 1—44*/(b—a)’.

Define

M(@)=Mo@smn(p) or (B—p)’/8  according as p=< or =(2a+p)/3,
and let
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M()=M(p) or M(a+B—p)  according as p< or =(a+p)/2.
THEOREM 3. Let p, ¢* satisfy (1.6). Then
Ry o)=¢ &> >Mp),  Rp a)=¢ < o*>Ma+p—p) .
An immediate consequence of Theorem 3 and Theorem 1B is the
COROLLARY. Let p, o* be such that
(1.8) M) <*<m, (1) ,
then for every open subinterval (a,bd) of J
L7y, 6*)=4[m,,(p)— 0’1" /(b—a)*,
where f* denotes f-1 ;5.

It should be noted that condition (1.8) becomes vacuous in the limit
as the length of the interval J increases without bound, i.e., as g—

a— 0o,

PrROOF OF THEOREM 3. Since
Ri(g, a)={(a,b) € T°: *<Mq arn2(p)} »
it suffices to verify that

max N M, carnre(ft) = M(ﬂ) .

(a,b)eT

The second equivalence follows by symmetry.

Examples. Let
J=[0, 4]
and suppose
p=3/2, | a@*=25/16 .
We find
M(3[2)=25/32<25/16 <15/4="m, (3/2) .
Hence by the corollary to Theorem 3,
L& (3/2, 25/16) =4[ m,4(3/2) — 25/16]*/(b—a)’

for every open subinterval (a, b) of [0, 4]. Thus, for example, the min-
imum probability assignable to the interval (1/2, 13/4) by any distribu-
tion on [0, 4] with mean 3/2 and variance 25/16 is
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4{(7/4)—(25/16)]/[(13/4)—(1/2)}=12/121 .
Now
[(1/2)+(13/4)]/2=15/8 ,  (1/2)=49/16,
7(15/8)=—8/3 , 7(13/4)=17/28 .
By Theorem 2, since
7(13/4)<15/8<7(1/2)<13/4 ,

a distribution on [0, 4] which has mean 3/2, variance 25/16, and assigns
this minimum probability to the open interval (1/2, 13/4) is

1/2 15/8 13/4
71121 12/121  38/121.

Now suppose that
p=3/2, a*=9/16 .

Ry(3/2,9/16)=¢ by Theorem 3 since 9/16>M(5/2)=9/32, so that by The-

orem 1B
[(3/2)—al/[(9/16)+((3/2)—a)'],  a=t((a+b)/2)<3/2
L2(3/2, 9/16)=
4[m, ,(3/2)—(9/16)]*/(b—a)?, otherwise .

For example to find the minimum probability assignable to the open
interval (0.4, 3.8) by distributions on [0, 4] with mean 3/2 and variance
9/16, note that

(0.44+3.8)/2=2.1 and that 0.4<7(2.1)=9/16<3/2,
so that
L{%44(3/2, 9/16)=(1.1)*/[(9/16)+(1.1)*] =0.683 .
On the other hand, the minimum probability assignable to the open
interval (0.4, 2.8), since
0.44(1.6)=—33/8,
is
4(1.1)(1.3)—(9/16)1/(2.4)*=0.602 .

Finally, the minimum probability assignable to the open interval (0.4,
2) is zero. Distributions whose values at these intervals respectively
attain these minimum probabilities are easily found via Theorem 2.
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2. The minimum probability within k& standard deviations of the mean

Let g, ¢* be arbitrary satisfying (1.6). We give here the minimum
probability assignable to the open interval with endpoints p+ke (£=0,
arbitrary) by any distribution on J possessed of this mean and variance.
Equivalently, let X be a random variable distributed on J with mean
¢ and variance ¢*. We give the smallest value that

P (| X—p|<ko)

may have.
More precisely, let

L¥=L¥g, 0*)=min {P (u—ko, p+ka)): PeVy(y, o)} .

THEOREM 4. Let p, o* satisfy (1.6). Let

A=Y min(u—a,p—p), B=1max(u—a,s—p
g g

and let
4=A+B=(8—a)/o .
Then
0, 0=k=min(1, A)
(K*—1)/K*, 1<k<A
L¥=+ (Bk+1)/4-(k+A), A<k=1/A
B/ +1) , max (4, 1/A)<k<B
1, B<k.

Observe that either the second or the third condition must always
be vacuous. Note that L} is continuous on the left in & with jumps
at k=A and k=B. Note that as A— oo, only the standard Tchebycheff

inequality remains.
Proor. We shall suppose that
(a+p)2=p,
equivalently that
A=B—ple, B=(p—a)lo.

The proof is strictly analogous when this inequality is reversed. For
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P any probability measure on J,

P((g—Fko,B)), A<k=B,
P (z—ko, p+ko))=

P)=1, B<k,
so that
LiDe vsrdpty 0°) 0=k=<A
2.1) Li={ 1-UQ (o), A<K<B
1, B<lk

where U (¢, o*) is defined by (1.1). Substituting a=p—ke, db=p+ke
for k<A into Theorem 1B, we find the condition under which the first
expression for the minimum probability holds to be vacuous; the sec-
ond expression, which reduces to (k*—1)/k* to hold when k=1; zero to
hold when k<1. Thus

LD, wirlpt, 6)=0 or (K*—1)/k*

according as 0<k=<min (1, A) or 1<k=<A.

Corollary 1.2 of [5] gives ULJ(y, ¢*) for a<b=<p and all g, o* satis-
fying (1.6). Substituting b=p—ke for A<k<B into the conditions and
expressions there given yields

[Ak+4)—1]/4-(k+4), A<k=1/A
1/(k+1), max (4, 1/A)<k<B.

Subtraction from 1 yields the second line of (2.1) and the third and
fourth lines of the theorem. The last line of the theorem is obvious.
This completes the proof.

U=l 0°)=

FErxamples. Let
J=[-3,2].

If
p=1/2, @=9/4,

then A=5/3, B=7/3 and
0, 0<k=<1
(K-1)/k*, 1=<k<5/3
k(k*+1),  53<k<T[3
1, 73<k.
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If
n=-2, a*=25/16 ,
then A=4/5, B=16/5 and

0, 0<k<4/5
(16k+5)/A(k+4) ,  4/5<k<5/4

T e+, 5/4<k=16/5
1, 16/5<k .

Thus in particular there exist distributions on [—38, 2] with mean
1/2 and variance 9/4 which place no mass at all within one standard
deviation of their mean, but there exist no distributions with mean
—2 and variance 25/16 for which this is true. The least probability
that any such distribution can place within one standard deviation of
its mean is 7/12.

The least probability that a distribution on [—3, 2] with mean —2
and variance 25/16 can place in any open interval with endpoints more
than 4/5 standard deviation from its mean is 89/160, but there exists
such a distribution which places no probability at all on the open in-
terval with endpoints exactly 4/5 standard deviation from its mean.
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