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1. Introduction

Let X, X, X;,--+,X,, -+ be a sequence of independent random
variables, identically distributed like Y=log X~ N(g, ¢*), where —oo<
n<oo and ¢°>0. The expectation & of X is

(L.1) ¢=exp [ptia],

and its variance is given by

1.2) D*=¢%exp [¢']—1) .

We consider the following problem: Let h, be any estimator of € based
on Xj,--+, X,. Then can we obtain » and h, such that

(1.3) P (h,—¢|=08) =y

for all >0 and 0<y<1? As in Zacks [6], we can not get such fixed
number n and h,. So Zacks [6] considered a sequential approach to the
problem. Using Anscombe [1] and Chow and Robbins [2], Zacks [6]
investigated asymptotic properties of stopping times based on maximum
likelihood estimator and sample mean for the mean &. Furthermore
Zacks [6] gave the asymptotic relative efficiency for their two stopping
times.

The purpose of this paper is, if anything, to give exact properties
of their stopping times and to compare two procedures.

2. Preliminaries

Let (2, A, P) be a probability space and {A,: A,C A, jeJ} be
a non-increasing sequence of o-fields where J is a continuous sequence
of integers including possibly +oco. We say that a family Z={Z,, J;;
JjeJ} is called a reverse submartingale if for all jeJ (i) Z, is an
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Aj;-measurable random variable, (ii) E Z}<oo and (iii) E[Z,| A]=Z:
for j<k, kedJ. If E|Z,|<oo for (ii) and E[Z,| A ]=2Z, for (iii), we
call a family Z={Z,, A,; j€J} a reverse martingale. We say that a
random variable M with values a.s. in J is a reverse stopping time if
{M=j} € A, for all jeJ. We shall use the following lemmas in Chow,
Robbins and Siegmund [3].

LEMMA 2.1. Let Z be a reverse submartingale and M a reverse
stopping time. If M=jg, (4o€J), then we have

(2.1) EZy<EZ, .
If Z is a reverse martingale, the equality in (2.1) establishes. A
well known reverse martingale is n! E"J X, (n=1,2,--.), where X, X,,
-+, X,, -+ is a sequence of i.i.d. ran(iiz‘m variables with E |X;|<co.
LEmMMA 2.2. Let Z={Z;, A;; jeJ} be a reverse (sub)martingale

and f be a real valued (increasing) convex fumction. If E{f(Z;)}*<
oo for some j,€J, then

(2.2) {f(Z;), A;3 G€d, 5.7}

18 a reverse submartingale.

3. The sequential modified maximum likelihood estimation procedure

We consider the following modified maximum likelihood (M.M.L.)
estimator as the estimation of §=E (X) based on X, X;,---, X,:

A

3.1) bi=exp | F,+2S2]

where 17,,=n“i§‘_1, Y, and S:=(n—1)" iznl (Y;,—Y,)* with Y;=log X,. Zacks
[6] considered the maximum likelihood estimator instead of ¢, in (3.1).
Putting U,=v7 (Y,—p)/e and V,=+v(n—1)]2(S%/s*—1), U, is a standard
normal distribution and the limiting distribution of V, is a standard
normal distribution. After expressing the statistic £, with U, and V,,

apply Taylor expansion to £.. Then the asymptotic distribution of £,
is N(§, £%*(1+4*/2)/n). Then the probability in (1.3) can be written as
follows.

®-2) P (é,—¢l=08)=P (vwrlé—el/{eo(1+4o7)| "

semyofis o))
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Therefore we define the following stopping time:

(3.3) N=inf [n=n, ngx3[11a~zs:<1+%sz>} ,

where y3[1] denotes the lower 100y% point of chi-square with one de-
gree of freedom and the fixed constant number n, is greater than 3.
After N observations have been taken, we estimate £ by éNzexp [Yy+
S%/2]. The stopping time due to Zacks [6] is a little different from N
in (3.3). However the author can not understand why he obtained
log™*(1+9) instead of 47% in (3.3) from the calculation (3.2). Here we
show that

(3.4) 1}£§P(!§N—EI§55)=r .

We note that P(|§N~E|§66)=P (Ey—&)<e%Y), Njc—1 a.s. as in Lemma
3.1 of Zacks [6], where ¢=y[1]0"%"*1+¢%/2) and the asymptotic distribu-
tion of &, is a normal with mean & and variance &%*1+6*2)/n. Though

A

&, is not a maximum likelihood estimator for &, by the similar consid-
eration with the proof in later Theorem 3.4, we have the desired con-
clusion (3.4).

A useful random variable related to N defined by (3.3) is the fol-
lowing variable :

sup {mgnolm<x§[1]6"2S3n<1+%an>} ,

(3.5) M=
n—1 if mgxﬁ[l]a‘ZSZ,L(l—}—%S?n) for any m=n,.

This is a reverse stopping time, which depends on the future and not
on the past. Such consideration as in (3.5) was used by Simons [5].
He obtained the expectation of the stopping times to get the fixed-
width confidence interval of mean of a normal distribution by using
the theory of reverse martingale. In this place we give the evaluation
of the stopping time N in (3.3) by applying reverse submartingale.

THEOREM 3.1. For all large n, we have
(3.6) P(N>n)=pi™,
where 0<p,<1.

Proor. We have

3.7) P(N>n)<P <n<x§[1]a’232<1+—;—83>>
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=P(S:>—1+(1+2nd"/3[1])") .

n—1
Since we can write S;=(n—1)"!'>} Z,, where Z,,---, Z,_, are independent
i=1

and identically distributed random variables, for some fixed >0 we have

(38 E[exp[t|T Z— (-1 (+20mzme-} ||
— {exp [—t{(1+20"n/x[1])2—1}IM(®)}*'=R.H.S. of (3.7).

The above M(t) is a moment generating function of Z;,. Therefore for
some large m,, exp [—t{(1+238n,/[1])"*—1}IM(t)=p;<1. Thus for n=>
mny, we have (3.6).

Next we evaluate the expectations of M and N.

THEOREM 3.2. For variables M and N, we have

(3.9) E M<o+(n,—1)+ L0102
(ny—2)
(3.10) E N<c+n+ 410%™
(n,—2)

where ¢=y1]6"%*(1+4*/2).
Proor. By (3.5), we have

(3.11) M< A0S (14 2 82 vz + (10— D -

Since the statistic S? can be expressed as azf‘.wi/(m—l), where w;,
=2

«ee, Wn, - are independent chi-square random variables with one de-
gree of freedom, {S%, A.; m=n,—1,n,,---} is a reverse martingale,
where A,=JA(S2, S%,1,-++). Then by Lemma 2.2, {S3(1+S%/2), An;
m=mny,—1, ny,---} is a reverse submartingale. Therefore by Lemma 2.1,
we have

3.12) EM=g[1"E Sgo_1<1+-é-szo_l> +(ny—1) P (M=m,—1)

=XZ[1]a-2(aZ+"_‘+ o' )+(n0—1) P (M=n,—1).
! 2 m—2

Thus we obtain (3.9). For (3.10) we get it because N<M+1.

THEOREM 3.3. For the expectations of powers of M and N, we have

(13)  EMS@m—270) 3 (] ) {n-2)e)
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k+v—1 N
I (g —2)/2+13} +(no— 1),

(3.14) EN=3( )(2){?[1]6'202(71,0—2)")’“ 5(%)

A2 T (=224} 4+

for v=1,2,--

Proor. Since {[Si(1+Si/2)], An; m=mn—1,my,---} (»=1) is a
reverse submartingale by Lemma 2.2, we obtain (3.13) and (3.14) by
Lemma 2.1.

Next we consider the property of the stopping time N as §—0.

THEOREM 3.4. As 0—0, V¢ 8(N—c)/v 2 *(L+a")y[1] converges in
law to the standard mormal distribution, where

c=2[116"% ( +4 02> .
ProoF. From (3.3), we have
(3.15) Nzxi[l]a‘ZSI’V(H—%S}v) and
N—1<x$[1]a-2s;_1<1+_;_33v_1> .

Let L:=((n—1)/n)S:, then L} is a maximum likelihood estimator for ¢’
Therefore L2(1+ L2/2) is also a maximum likelihood estimator for o*(1+
d*/2). Since Njc—1 a.s. as §—0, we have

(3.16) K—CW{SN(H SN>—02<1+%02>}
—cl/Z{L2<1+ LN> 02<1+% 2>+0,,(c~1)}
oo oo

By Theorems 1 and 4 in Anscombe [1], Ky and K,_; converge in law
to a normal distribution with mean zero and variance 2¢*(1+6%: There-
fore we have Theorem 3.4.

For the other problems in point estimation of the mean, Ghosh and
Mukhopadhyay [4] considered the asymptotic normality of stopping
times.
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4. The sequential sample mean procedure

Let X,=n"! é X;, then the limiting distribution of sample mean
i=1

(S.M.) X, is a normal distribution with mean ¢ and variance D¥n by
central limit theorem. Thus we define the following stopping time:

4.1) N*=inf {n=n,|n=y}116 " exp [S2]—-1)} .

By the same consideration as in Section 3, we define the reverse stop-
ping time M*, that is,

sup {mzn,| m<y[1187*(exp [S]—1)}
ny—1 if m=y[1]07%exp [S.]—1) for all m=mn,.

(4.2) M*=

By the same consideration as in Theorem 3.1,

THEOREM 4.1. For all large n, we have
(4.3) P(N*>n)=pi™,
where 0< p,<1.

Now put f(x)=(exp[x]—1)* for >0 and positive integer «. Since
Sf'(@)=c(exp [x]—1)" exp [¢] >0 and f"(x)=a(e—1)(exp [¢]—1)*"* exp [2x]
+a(exp [#]—1)*!exp [x]>0, the function f(x) is increasing and convex.
Then, by Lemma 2.2, {(exp[Si]—1)*, An; m=n,—1, n,,---} is a re-
verse submartingale. Thus using Lemma 2.1, we obtain

THEOREM 4.2. For N* and M* defined by (4.1) and (4.2), respec-
tively, we have

@4 EMes@EpY S (2 )0 (1-- 22 -1y
> -

@5 EN==3 (Yo 3 (7 )-n-(i- nzo’ff; ) g

for v=1,2,-..,
Next we have

THEOREM 4.3. As d—0, v ¢ 8*{N*—c'}/V 2 ¢* exp [¢*])}[1] comverges
n law to the standard normal distribution, where ¢’ =y[1167%(exp [¢*]—1).

5. Comparison

Zacks [6] showed that the sequential maximum likelihood procedure
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is superior to the sequential sample mean procedure in an asymptotic
sence as d—0. In this place we show that the sequential M.M.L. pro-
cedure is superior to the sequential S.M. procedure in an exact sence.

THEOREM 5.1. For N and N* defined by (38.3) and (4.1), respec-
tively, we have NSN* a.s.

PrOOF. We consider two event {N=n} and {N*=n}. Then

(5.1) {(N=n}= §i<xz[1la-zsz(1+%sz>, i=tg, e, m—1,

ngxi[1]6‘2S§< 1+—513—sz>}

and
(5.2) {N*zn} = {i<x[1]07*(exp [S{]—1), i=m,,- -+, n—1}.

Since exp[Si]l—1=8i(1+S}/2), we have {N=n}Cc{N*=n}. Then we
have

(5.3) P(NSN%=3 P(n=N=<N*=3 P(N=n)=1.

n=n0 n=n0

Thus we obtain the desired conclusion.
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