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Abstract

The kernel method of density estimation is not so attractive when
the density has its support confined to (0, o), particularly when the
density is unsmooth at the origin. In this situation the method of
orthogonal series is competitive. We consider three essentially differ-
ent orthogonal series—those based on the even and odd Hermite funec-
tions, respectively, and that based on Laguerre functions—and compare
them from the point of view of mean integrated square error.

1. Introduction and summary

In the past a considerable amount of attention has been devoted
to the problem of estimating a density which is smooth on the whole
real line. There are several competitive classes of nonparametric esti-
mators, the two most popular being kernel estimators (introduced by
Rosenblatt [6]; see also Rosenblatt [7], Parzen [5] and Watson and
Leadbetter [13]), and orthogonal series estimators (see Cencov [2],
Kronmal and Tarter [3] and Watson [12]). A kernel estimator usually
has greater efficiency than an estimator based on orthogonal series,
although it may be more tedious to calculate and update.

If the density has its support confined to the positive half line and
is not smooth at the origin then the kernel method will not be so
attractive. Define the partial mean integrated square error of a kernel

estimator f,, by
J(@=\_Elf@)—f@Tds,  a>0.

Under suitable conditions on the density f, J.,(a) will converge at a
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rate of O(n**) for all a>0. However, the estimator may perform
poorly in the neighbourhood of the origin, and its mean integrated
square error, J,(0), may converge at a slower rate.

In this situation an estimator based on an orthogonal series may
be very competitive. We shall consider three essentially different series
—those based on the even and odd Hermite functions, respectively, and
that based on Laguerre functions. Of course, Hermite functions have
a simple expression in terms of Laguerre functions, but they give rise
to estimators with significantly different properties. In Section 2 we
consider the Hermite series expansion, and show that for many pur-
poses the even series gives a more efficient estimator. Indeed, the
partial mean integrated square error, defined by

Jia, )=\ Elf@)—f@lds, 0<a<b<eo,

converges at a rate of O(n~*®). To obtain this rate it is necessary to
impose more stringent conditions on the smoothness of the density than
in the case of a kernel estimator, but we feel that this is compensated
for by the comparative ease with which an orthogonal series estimator
may be calculated. In Section 8 we examine estimators based on
Laguerre series, and show that these estimators are generally inferior
to those based on the even Hermite series.

Schwartz [9] and Walter [11] studied the properties of the Hermite
series used to estimate densities which are smooth on the whole real
line. In this case it was also necessary to impose more stringent con-
ditions to obtain rates of convergence comparable with those of a ker-
nel estimator. As Schwartz and Walter pointed out, the properties of
orthogonal series estimators in one dimension extend easily to any num-
ber of dimensions, and the rates of convergence are preserved. There-
fore our estimators will be more attractive than kernel estimators in
a multidimensional situation.

2. Estimation by Hermite polynomial expansion

Let ¢,=(z"2"m!)~"2. The orthonormal Hermite system on (—oo, o0)
is defined by

hu(®)=CnH (%)=, mz0,

where the H, are the Hermite polynomials. Suppose that the bounded
density f has its support confined to (0, o), and is continuous and of
bounded variation on each interval (0, 2), 2>0. Then the even and odd
Hermite expansions of f, defined respectively by



DENSITY ESTIMATION 353
Sfx)=2 %‘J Oz P (0) =2 %‘_x Qo i1 Pomi1(2)

with a,= Sw f(®)h,,(x)dx, converge to f at each point £>0. (See Sansone
0

[8], pp. 381-382). If X, X,,---, X,, is an independent sample with com-
mon density f then

=1 3 ho( X
i=1
is an unbiased estimate of a,, and two estimates of f are given by
Fulz; m)= 1 ahy(2)  and Fo; m)=3} Gayibayale) , >0,
- iz

Since £,(0)=0 for odd m then use of the estimator fA,,2 forces the esti-
mated density to pass through the origin. If f(0+)+0, the estimator

fnz will have a larger bias (and consequently a larger mean square er-

ror) than the estimator f',,l. However, in real situations there may be
theoretical or experimental evidence to suggest that f(0+)=0, and in

this case the estimator fnz will often perform better than f,,l. These
heuristic conclusions are made precise by

THEOREM 1. Assume that E(X{)<oo. If f has a bounded deriv-
ative on (0, o), if F(0+)=1(0) is well defined and

|, @1 (@)lda<oo,
then
S:o E [f'ng(x; m)— f(x)'dx=@/nr)m i+ x " m V2 £ (0):+o(n~'m 2+ m~1?)

as m and m—oo. If f has three bounded derivatives on (0, o), if
FO+)=0 and f"(0)=s"(0+) is well defined and

(2.1) S: x| f1(x) — B2 [ (x) +3(2* — 1) f'(2) + 2(3 — 2) f(2) | dr < o0
then

|, E (s m)— f(@)da
= (2/nr)m 2+ (80x)Lf"(0)m "2+ o(n~'m" 4 m /%)

as m and m—oo. If f has two bounded derivatives on (0, oo), if
f(0)=7'(0+4) s well defined and
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S: a*2| f"(x)— 22 f'(x)|de < oo ,
then

Sj E [fu(@; m)— f(x)ldx
=(2/nr)m* 4 (127) ' m 2 f'(0) +o(n~'m 2+ m~%?) .

The optimal value of the mean integrated square error may be
determined in the usual way. For example, if f’(0)#0 then

int "B [fu(@: m)— F@)Fda~ @802 £ O *n ",

and the infemum is attained with

m~(1/2)| f'(0)|(n/2)""* .

The results described above have obvious analogues if we assume
that f®(0+)=0 for 0<i<r, say. However, in applications there will
usually be little evidence to permit even the assumption f’'(0+4)=0.

Hermite polynomial expansions of functions often converge more
quickly away from the origin than in the neighbourhood of the origin.
In this respect the mean integrated square error, which is influenced
by behaviour in the region of the origin almost as much as by behav-
iour in the region of any other point, may give an unduly pessimistic
view of the performance of the estimator. If we are prepared to sacri-
fice some accuracy of our estimator near the origin and towards in-
finity we would construct it to minimise the partial mean integrated
square error,

|, E Lu(a; m)—f@lds ,

where 0<a<b<oo. This would lead us to choose a smaller value of
m. We shall consider only the estimator F..; similar results to the
following may be obtained for f',,z.

THEOREM 2. Suppose 0<a<b<oco. If f has three bounded deriv-
atives on (0, o), if E(XP)<oo, f/(0)=f'(0+) ts well defined and if (2.1)
holds then

14 A
|, E fu(; m)— f(o)ida=0(n"m"*+m™) .
Setting m=0(n"*) we obtain an estimator whose partial mean in-

tegrated square error converges at a rate of O(n~*®) on any compact
subset of (0, o). This is of course the rate of convergence of the



DENSITY ESTIMATION 355

mean integrated square error for a kernel estimator.

ProOF oF THEOREM 1. The following lemma is an easy corollary
to the Riemann-Lebesgue lemma and the result (10) of [8], p. 324.

LEMMA 1. Let g be a measurable function on the real line. If
| @+eplg@)ds<eo

then S“’ 9@, (@)dz=0(m-"), and if

|" a+plo@lde<c  and | gaida=o

£

g(x)dx.

then S: (@) (x)da ~ (2rtm) S

Integrating by parts and using the formula H/ ,=2(m+1)H, we
see that

(22)  Clap=— L (Mt SO) Huor+ Am+ 1) (m+ D] F (O Hoo0)
+[8(m+1)(m +2) (m+3)][F7(0) — F(O)1 H,0)
—[8m+ 1) (m+2)(m+3)] | [ (@)~ 32" (@)

+8(— 1) f(®) + (38— ) f (@)l H,,o(@)d .

Since H,,(0)=(—1)"(2m)!/m! then under the appropriate conditions
of Theorem 1,

Q1= (— 1" ML O) 7o

Aoy = % (___ 1)m+17z_—l/2m—5/4f1(0) +Sm ,

and if £(0)=0, @yn_1=(1/8)(—1)"+'z~ "2 "4 f"(0)+t,, where

[7a]S=m~Y S: [xf(x)—f"(x)]le” 2/2h2m(x)dx +o(m)

|sm|=m™!

|, L7 (@) =22/ @)+ @ = 1 @) hap )| +0(m ™)
and

Itmlém—:%/z

|, U7 (@) =82 f"(@)+ 3@~ 1)f (&) +2(8—") f()]

xe‘”2/2h2m+2(x)dx’ +o(m~"y .
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It follows from Lemma 1 that under appropriate conditions, r,=o0(m™**),
s,=o(m™*) and t,=o(m™"*), so that

[ [ Juters m)— f@)dz=2 3] a2, =(12r)" /(0 m~¥+o(m ")
and

[, [E Fulw; m)— fla)Fda=(807)"f"(0Fm "+ o(m™") it F(©)=0.
Since E(X#)<oo then by Lemma 1,

n Sm var [f',,,(x; m)]ldx~2 % (4ntg)~Vim2n i,
0 1

Similarly » S“ var [f‘,,z(x; m)ldx~2r~'m'%, and Theorem 1 follows.
0

PROOF OF THEOREM 2. We first prove

LEMMA 2. Let A(2) denote either cosz or sinz, and suppose a, b,
¢ and d are real mumbers with 0<a<b<oo and 0=|d|<c<oo. Then

i_ Al(en+d)*x]=0(m'?) uniformly in x € [a, b] as m— co.

PrROOF. We treat only the case A=cos. By making a scale change
we may assume without loss of generality that 0<a<b<2r. Let p=
p(n) be the smallest integer such that p*=cn+d. Then (en+d)=p—
(p*—en—d)/2p+r, where for a constant C, |r,|<Cp[p*—(p—1)T/p'=
O(n~'*) as n—oo. Therefore

cos [(en+d)*x] =cos (px) cos [(p*—en—d)z/2p]
+sin (px) sin [(p*—cen—d)x/2p]+O(n~"?)
uniformly in z € [a, b].
Let B, be the set of indices n such that (k—1\<cn+d=FkK, let
a;+1 be the number of elements of B,, n, be the largest element and

b,=cn,+d. Then |a,—2¢%|<3+c™' and |b,—Fk*<c. With g=p(m)—1
and

S(m):f‘_, EB cos [(en+d)"*x]

n=1 ne

we have, after some algebra,
S(m)= ‘q;‘, cos (kx) jzk‘, cos (cja:/2k)+ki‘, sin (kx) Zk sin (¢jx/2k)+O(m'?)
k=1 =0 =1 j=1

= (2/cx)[sin x é‘i k cos (kx)4(1—cos x) ké k sin (ka:)] +0(m'?)
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=0(m'"?)

uniformly in z € [a, b], since, for example,

' 1 cos (ka) 3 sin (¢jz/2k) sin [(kz—bk)x/zk]{ —0(m™)
k=1 i=0

2 % cos (J2)=1+cos (n2)+sin (nz2) sin z/(1—cos z)
and

é cos (kx)| .

k=j

ISqJ k cos (kac)\ <q max
1

1sjsq

Now, 4(m, x)= ] 5 A[(cn~|—d)‘/2x]—S(m)’ is dominated by the number of
1

indices n such that [p(m)—1P<cn+d=<cm+d. Therefore 4(m, x)<
2p(m)/c+1, and Lemma 2 follows immediately.

From the result (2.2) and the expansion (16,) of [8], p. 326 we see
that

amhm(x):bm{cos [(4m+1)‘/2x]+(4m+1)‘1/2%x3 sin [(4m+1)1/2x]} +O(m™Y)

uniformly in x€[a, b], where b,=—(4z)"'m=*2f"(0)[1+O(m™")]. Using
Abel’s method of summation and Lemma 2 we find that

@3) 3 ayhy(@)=31 6,—b,) U(@)

+1

+%x3 31 [b,(45+ 1) —b, (45 +5) "]V (@) + O(m )

+1

where Um(x)zin cos [(47+1)"%x] and V,.(x)= inj sin [(45+1)"*x]. The con-

stant coefficients in the series on the right in (2.3) are O(37%%), and so
in view of Lemma 2,

F@—E [fulw; m)]= 33 @b (&) =0(m™)

uniformly in a<x=<b. Therefore Sb[E fnl(x; m)— f(x)'de=0(m™?*), and

from the proof of Theorem 1 we find that Sb var [f'nl(x; m)]de=0(m"?In),

completing the proof of Theorem 2.

3. Estimation by Laguerre polynomial expansion

Suppose a>—1 and let ¢P=[m!/I'(m+a+1)]"2. The (generalized)
orthonormal Laguerre system on (0, o) is given by



358 PETER HALL

(@) =LY @R e, m20,

where the L{’ are the (generalized) Laguerre polynomials. The even
and odd numbered Hermite polynomials have a simple expression in
terms of L{¥» and L{», respectively, but the different polynomial
classes lead to estimators with quite different properties.

Suppose that the bounded density f has its support confined to
(0, ©), and is continuous and of bounded variation on each interval
(0, 2), 2>0. Then the Laguerre expansion of f, defined by

F@)=3 al(@)

with a,S,:‘):Soo f(@)(x)dx, converges to f at each point x>0. (See [8],
0

p. 384.) If X, X;,---, X,, is an independent sample with common den-
sity f then an unbiased estimate of a{® is

n
ap=n"" 5 (X))
=
and an estimate of f is
A m N
Jra(; m):j%}’ asl(x) .

Let l=I(e) be the smallest integer strictly greater than (134 28|a—
1/2))/6, suppose f is differentiable on (0, o) and define

g(x)=2af(2)+2f"(x)—af(x) .

THEOREM 3. Suppose f 1s differentiable and of bounded variation
on (0, ), g, 18 of bounded wvariation on (0,1), x~g.(x) 1s of bounded
variation on (1, ), and

E(X"")<oo  and g“’ 2| g (z)|de < oo .
Then for a>-—1,
| E Ualo; m)— f@)ldo
= (nm)~'m!” S:’ o (2)da + O(m=") +o(n-m )
as m and n— co.

The moment restrictions may be relaxed by a more judicious choice
of ¢ in the expansion (32) of [8], p. 345; see the techniques in the
proof below. However, this leads to a very complex expression for
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the optimal 1.
The rate of convergence obtained is the best possible for distribu-
tions satisfying the conditions of the theorem. The term O(m™) stands

for > [a§”)%, and if a{” behaves “regularly” as m—oo, the rate can

m+1
only be reduced if afy’ converges to zero at a faster rate than O(m™).
However, consider the density f(z)=(1/2)e~**, x>0, for which

2] g = | Lip()ereida
0

=F(%a+1>F(m+a+1)2Fl<—m, —;-a-kl; a+1, 1>/m!F(a+1)

=laf<m+—1—a>/m! ~ L gppen-
2 2 2

if @#0. (We refer the reader to Magnus, Oberhettinger and Soni [4],
p. 245, Abramowitz and Stegun [1], p. 556 for standard results on
Laplace transforms and hypergeometric functions.) But ¢{’~m~", and
so a®~a/dm. Therefore for densities satisfying the conditions of The-
orem 3, the rate of convergence of the mean integrated square error
may be no better than O(n~%3).

Proor or THEOREM 3. The proof is largely contained in two lem-
mas. First we establish

LEMMA 3. Under the conditions of Theorem 3, a{®=0(m™") for any
a>—1.

PrOOF. (We shall often omit the notation a.) Integrating by parts
and using the recursive properties of Laguerre polynomials we obtain

3.1) exla, = —(2m)~! S‘” 9(@)a e LD (@) da .
0

Let N=4m—3, f=(2a+3)x/4 and choose 0<r<e=1/6 such that

o (8)(4 s[4

From the expansion (32) of [8], p. 345 we deduce that for constants
8,—0,
3.2) Cn e~ LiH (1)
=(1+3,)z""*m"*z=**{cos [( Nx)"* — 8]+ p(x) (Ni) /2
X sin [(Nz)*—B]+ R(m, x, a)(Nz) ')} ,

where p, and p, are polynomials of degrees 2 and 3[+8, respectively,
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and |R(m, z, @)|<1 for N'sx<N'". Let A(z) denote either cosz or
sinz, and B(z)=A(r/2—2).
Let p(x)=1. For =0 or 1 we estimate

IN)={_, a=HNe)p,(@)g(a) AL(Nw)"Jds -

-

Noting that p,g is of bounded variation on (0, 1), and using the second
mean value theorem, we deduce that

(3.3) I(N)=0(m™"*) .

A similar argument can be used to show that with M=N",
(3:4) Ja={ a~g(@)Al(N2) v =0(m)

It is easily seen that

(3.5) |, &) pi()g(w) AL(N@) *1ds | =O(m )
(3.6) S;_l =¥ R(m, w, a)(Nx)“pz(x‘”)g(m)dxl =0(m~") ,
3.7) [} a=4R0m, 2, @) (Vo) tp (o )g )| =0(m4) .

Combining (3.2)-(3.7) we find that
(3.8) Cn S:_l e L D(x)g(w)dz =O(L) .
Since |L{HP(x)|<Cm~'e™® (Abramowitz and Stegun [1], p. 786) then

IV_l
(3.9) Cn So m“”e"’/ZLS,‘:fP(a;)g(x)dxl —0(),

and since sup e~ **x***"2| L&+ D(x)| < Cm*+* (Szegd [10], p. 235) then

zrz1

(3.10) |c,,, S:xa/ﬁe-zﬂLg,:fp(x)g(x)dxl =o(1) .

From (3.8)-(3.10) it follows that ¢, Sw 2%~ L D(x)g(x)de=0(1) as m—
oo, and Lemma 3 follows immediately from (3.1).
LEMMA 4. Under the conditions of Theorem 3,
S“ F @) (@) ds ~ () S“’ o2 f(0)dw
0 0

for any a>—1.
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ProOF. From the expansion (32) of [8], p. 345 we see that for
constants 4,,—0,

(8.11) l%)(x)2=%(1+3m)ﬂ"m’1’2x“/2{1+cos [2(Nix)2—28]
+(Nz)™R,g,(x) + (Na) " Rugo('2)
+(Nz)~ Ryqy(x'*) + (Nw) "Rigu('?)}

where N=4m+1, f=(2a+1)z/4, q, through ¢, are polynomials of de-
grees 2, 3l+8, 3l+12 and 61416, respectively, and |R;|=|Ri(m, x, &)|<
1 for N!<x<N'"%. (Here ¢, r and [ are chosen as in the proof of
Lemma 3. In the case a<—1/2, note the comments of [8], pp. 346-
348.) Let M=N'Y and note that (Nx)7?=(x/M)*?x~%. It is readily
seen that

|} & (@) (N | R ) -+ (N@) 7| R 0, dr=o(L)
as M—oo for =2, 3 and 4, and

Sl x4 Nx) % R,q;| f(x)de <CN " v IOy =0O(m ™) .
N1 ./N_l
Writing A(z) for cosz or sinz we have

[ oAy f@da=2N- |7 Ay £ N Yy =0

(vt
1

by the second mean value theorem. Using the expansion (3.11) and
the estimates above we see that

(3.12) S:_l F@) () de = (2r) - tm 12 SM.1 2 f()da+o(m 1) .

N
Since |L{(x)|<Cm"e™* then
N1 Ayl
(3.13) SO f@l@ydesCm: || atds=0(m™),

and since sup /%~ Li(x)|<Cm~*~"* ([10], p. 235) then
=zl

(3.14) S‘” F @)@y de < Cm1 S” 50 f(@)dm =o(m-1") .
M M
Combining (3.12)-(3.14) we deduce Lemma 4.
It follows from Parseval’s equality and Lemma 3 that

|/ [ fulrs m)— f@ldo= 5 a=0(m™),
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and from Lemma 4 that n Sw var [ f',,,(m; m)}dx ~z"'m!?, proving Theo-
[

rem 3.
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