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Abstract

Let Xi,---, X, be i.i.d. random variable with a common density f.
Let fn(x)zqzn a:¢9.(x) be an estimate of f(x) based on a complete ortho-
normal ba.s,}g0 {¢.: £E=0} of Ly[a, b]. A Martingale central limit theorem
is used to show that (v an)“[n S (f(@) — f () dz— ﬂ,,]i»N(o, 1), where

=31 Var [$(X)] and oi=31 3 [Cov ($(X), p(X)I-

1. Introduction

Let X, X,,--+, X,, be independent and identically distributed ran-
dom variables with a common density f. It is assumed that f is con-
tinuous and square integrable with respect to Lebesgue measure. Let
{¢.: n=0} be a complete orthonormal basis for L,[a,b], i.e.;

(1) |, p@) @Mda=0,, 4,520,

where d,; is the Kronecker delta and the interval [a, b] could be infinite.
Asymptotic unbiasedness and various kinds of consistency properties of
the estimate f,(x) of f(x), defined by

(2) £)= 3} bugu(z)

where d,czl }n] ¢(X;), ¢,— o0 and ¢,/n—0 as n— oo, have been studied
n i-t

in the literature. The object of this paper is to study the asymptotic
distribution of the quadratic functional
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(3) Su=| (fu)— f@)yda

where f,(x) is the estimate defined in (2). Bickel and Rosenblatt [2] have
studied the asymptotic distribution of the functionals S, and 7, where
S, is given by (3),

(4) TFS {Lf(2)— F@PIf ()} da

and f,(x) is the kernel type density estimate. Lii [4] has derived the
asymptotic distribution of 7T, when f,.(x) is the density estimate based
on spline functions.

2. Notations and assumptions

We will use the following notations and assumptions. Assume that
all the random variables are defined on the probability space (2, F, P).

(5) a.=E[¢.(X)] , o =Cov [p(X), ¢:(X)] ,

n In dn
R
/—¢n=2 Ok and 072»=§_‘_| > Giw -
x=0 k=0 k=0

Also define ¢(X)=¢(X)—a,,

z<n) “/2 &=
i =
No, k=0

YA for j=2,---,n
0 for j=1, and j>n,
V.,=3\W,, for all n and j and
i=1

F,,=98(X,,---, X)) Jj=1,---,n and n=x1,

where B(X,:--, X;) is the s-algebra generated by Xi,---, X,; and F,
=g{¢, £}. The following assumptions are used in the proof of asymp-
totic normality.

(A1) 2 5 a2—0 as n— oo,

O, k>4,

(A2) o z

IIM:I

g — 00 a8 m— oo,

(A3) E¢iX)<M for some M and for all £k,
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(A4) ¢q,=0(n’) where %§3<—%—.

3. Results

LEMMA 1. Let V,; and F,; be as defined in (6). Then {(V,,, F.)),
Jj=1} is a Martingale for each n=1,2,--.

The proof of Lemma 1 follows directly from definition of V,.; and
F,,

e

LEMMA 2. Let W,; be as defined in (6). Then
(i) SEWLZ1 for all n,
Jjz1

.o P
(i) S Wi—1 as n—oo and
jzl

(iii) sup|W,;|=0 as n—co.
J

The proof of Lemma 2 is given in the Appendix.

DEFINITION 1. Suppose {(Z,, 8,), n=1} is a Martingale. Then
((Z,—Z,_,, 8.), n=1} is called a Martingale difference array.

DEFINITION 2. A double sequence {(W,,, F,,), n=1, j=1} is called
Martingale difference array if {(W,;, F,;), j=1} is a Martingale differ-
ence array for each fixed =.

DEFINITION 3 (Conditional Weak Convergence). Let {Z,} be a se-
quence of random variables defined on £ and let {B,} be a sequence
of sub-s-fields of F. Then we say Z,|B, converges weakly to a ran-
dom variable Y on (&, F, P) iff

E(f(Z)|8.)—E f(Y)

for every bounded continuous f. We will denote this convergence by
Z,|B.-=-Y.

Remark. In particular when B,=c{¢, 2}, the trivial o-field, then
this conditional convergence is equivalent to the usual unconditional
convergence. (See Remark 1 on page 12 of [1].)

The main result of this paper is given in Theorem 2 below. The
proof of Theorem 2 is based on a conditional central limit theorem for
Martingales due to Adnan [1]. We state this result (without proof) as
Theorem 1 for the sake of completeness. Let F,CF, be as defined in
Section 2.

THEOREM 1 (Adnan). If (i) {(W,,, F,,), n=1, j=1} is a Martingale
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difference array, (ii) 2 EW: <K<oo for some K and for all m, (iii)
2 —»1 and

(iv) sup|W,,| %0 then 33 W,,|Flo—2-N(O, 1).
J j=1
We now state the main Theorem.

THEOREM 2. If the assumptions (Al), (A2) and (A3) hold, then
|| (@)= f@)yds—m) Z-NO, 1)

PROOF. It is easy to see that

n | (@)~ Fa)yda

=125+l 92 Ba@nE)n 3 a
and
n| @ f@Vdr=F outn 3 ai=mtn 3 ot
Therefore
(D 75| (fn(x)—f(x))zdx—/tn]
e P B =)+ T T35 B AKRX,)
+ V%a,, k;}n a;=A,+B,+C, (say).

Now by assumption (Al), C, —»0 as n—oo. Also EA,=0 and Var[4,]=

i E (= @0 —0u)| =0(-%.) if (A3) holds. Consequently Var (4,)
mo: ~ Li=o nal

—0 if (A4) holds. Hence it is sufficient to show that Bn—{»N(O, 1). But

_ 11 o
Bn_ ‘\/_2-0," -’;L- EJ#; ’§)¢E(Xj)¢k(Xj’)

=131 Y2 S 5.(X)8X,)
i<i” Mo, k=0

_ -

_Zmz Z =3 W.; ,

where Z{» and W,; are defined in (6) and the asymptotic normality of
B, follows from Lemma 2. This completes the proof of Theorem 2.
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Next we give two examples of {¢,} for which assumptions (Al),
(A2) and (A3) are satisfied.
Example 1. Let ¢ (x)=+ 2 cos (kzx), k=0,1,--., and f® e L,[0, 1].
Then f(x)=3 dude(®)=3 a cos (kzx) implies f2(x)= — 3" ay(kr)? cos (krx)
k=0 k=0 k=0
=31 b, cos (krz). But f® ¢ L,[0,1] implies > bi= 3} r'k'ai—0. There-

k>qn k>qn
fore

(8) S a3 Ko o)

k>q, k>qy, qn

For some ¢>0 let [a, 8] be such that f(x)=e¢ (V x € [a, 8]), then
E¢i(X)=e Sﬁ cos? (kn'oc)dx:?e_ SM cos? (y)dyg—k% Saz cos’ ydy ,
a T Jkra 0y
where 01=([2ka]+1)izr- and 02“——([216,3]—-1)%,
=-% ([2kB]—1—[2ka]—1) Sm cos? ydy
kr 0
=—§— [2K(8— ) —2+([2kB] — (2kB)) — ([2ka] —2ka)]

= 5(32 @) _ k where 0<y<1.

Therefore

( 9 ) Ukk==lﬂ ¢i——(l;;;-§£§é§l¥l___ii___a; .

Since ia}’;<oo there exists k, such that a,ck>—s(‘94;a) for k=k, and

O Oy
hence o= Z Z gl >2 gi,— 00 as ¢,—oo. This shows that assumptions

(Al) and (A2) are satlsﬁed (A3) is trivially satisfied.
—:62/2
Evample 2. Let ¢,,(x)=i7_;§{%%; k=0,1,---, and (z—D)f €
Ly(— 00, ), where D:di and H,/(x) is the Hermite polynomial of
x

degree n. Then from (14) in [6] we get >} ai= (%> To show that

k>q,
g2— oo we proceed as follows. Let e, 8 be defined in Example 1. Then

E¢iz=e Sﬂ¢,i(ac)doo. Since ¢i(x)=¢i(—x) we can assume «, 3>0 without
a loss of generality. Now using (8.65.1) in [5] we get
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(10) ¢k<x)__~,=_2_kk_‘[z,, cos (rm_?)
_1_ 1 — 2,—t2/2 [T () 2
+ mgosm(m(x )t~ H dt}
1 By(z)1?
V7 2% [lkAk(m)J“ JN"J A
where N=2k+1 and
(2m)! if k=2m

m!

2m+2)! 1 I
_——(m-}-l)! TN if k=2m+1.

Expanding the right-hand side of (10) and integrating we get

(11) Sj ¢2(x)dx=7_i"2kk_'5 Ak(x)dw_’-w S‘ %wz)kdlz

24, [ A@BGE 4,
VN TR L W 2kl

Since |gu(x)|=Cy(k+1)"* for all ze(—M, M), =0,1,---, it follows
from the definition 2, and N that the second term in (11) is O(%),

the third term is O(k~**) and V?Zizkk' ‘/dk for some d>0. Also
B
2 2 — il
(12) SaAk(w)dx S cos (v x 2 )dx

2 (8—a) __r
« VN —(Kx/2) cos’ydy 2 2 VN

1 Spo/N—(Kx/z)

~ VN
where 0<y=<4. Now substituting (12) in (11) we get

|__#@r@zs | simpnze (-2 =200 -

Also 3 ai=0 ( —71;-> implies that there exists a K, such that

k>gq,

0=E gi—ai> e(i/i)d if k>K,,

and hence

% :V.": Ukk 22 a'k > % e(ﬁ4ka)d

as ¢q,— oo .
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This shows that for Hermite functions assumptions (A1) and (A2) hold.
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Appendix

PrROOF OF LEMMA 2. For simplicity we will write Z;; for Z{.
(i) EWL=E[Z;+ ---+2Z,_,,F=2n""(—1).
Hence

(al) WEWE="0"D 111 for all .
i=1 n n

(ii) To prove (ii) it is enough to show that E () W}, —1)—0 as n—
oo, in view of Chebychev’s inequality. Observe that

n n 2 n
E( 5 Wi-1)=E( L W) +1-2E 5 W
-1 j=1 j=1

n 2
=E<z‘, W,f,-> —1+2,  using (al).
i=1 n
n 2
Hence it is enough to show that E < = W,?,-) —1 as n—oo. But
Jj=1

(a2) E(ﬁ:W:,.>2=j'z'lEW,:,.+2§32EW,3,. 2
i =

E erj= E [le+ e +Zj—w]4
Y2 S S0 [a)

Mn k=0 i

=E {
<40t Sp[S5.00)] Eaix)

nlo} =

=40 [ S B 3G~ ) EF+3G- DG —-Dokd]

nioy L=

Therefore

(a3) ZEWsie (0ol 33 (E 3 +n(n—1)(n—3) 3 ok Edt) -0
j=1 n'o, 2 ©=0 i

as n—oo if (A2)-(A4) hold.

Now consider
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(ad) wsWap=[Zy+ - +Z;_1, 2+ +Zj_y 4}
(S5 e G 5 2
j=1j-1 7=1 41
NEEHE
=A75")+ B35 +Cu(75")+ Du(37") -

It is easy to show E A,(j5)=2(j—1)E ZiZi+(j—1)(5'—3)(E Z2).
Therefore

23 31 E A7)
—4 EZ42: 5 33 (G- +2E Zzy IPHUEIUES)

nn—1)(n—2) )
6

28553 Bouen B8R

T e e

=14+0(1) .

Now

.. j_l
|E B.(i)|= |2 5 E 242,47,

<8-1) (5131535 o B 3] E 3|

<80—1a
na,,

Therefore 23 > |E Bn(jj')|:0<%>. Also it is easy to show that
i<y’

n

E C,(37')=0 and hence 23 31 E C,(55)=0. Finally
j<i’

(a5)  ED,(jj)=E [z 5 2,80 [ 55 2 Zos]|

=4 E E EZ,;Z,,Z,y2;,

i<

——42.1 2 E [ZiJZ“ E(ZijZij le ’ Xjr XJ)]

i<’

=16 (z 3 ou B X0BUX) ) G-1) (-2 -

'nan

Now we will show that (2 Z‘, Oir ¢k(Xl)¢k(X2)> <M for some M.

n
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Observe that

9 9n 9 I 9 qn
Zk] kZ O Pu( X)) (X)) = % kZ O i X)) (Xs) — % ; O @i (Xz)
9 qpn ap 4y
—% % O'kk’ak’¢k(Xl)+% % OrpQrplly «
Squaring we get
In qn _ _ 2
(a6) B (33 0uAX)puX)
In On 2 2
§4<E <2 N 0kk’¢k(X1)¢k'(X2)> +2E <Z N akk'ak¢k'(X)>
k k' k k'
2
+ <§ ; akk,akak,> > .
First term on the right-hand side of (a6) is

(@) (YN ous(X)uX))

=S S (5 2 0uhl@)w) F@)f @)dady

C ey

S S (@) + 2 2 rui(2)pev) | dady

<
*M:

where L=sup f(x). The second term in (a6) is

(a8) E [L S akk,ak¢k,(x)]2=g (z > okk,akc;sk,(x))z f()dz
=1 {[3 (3 aocjpo]

13 (San)

IIA

TERTES o)

k k'=0
The last term in (a6) is
2
(a9) <2 > O'kk'aka/k'> == alzc)2<2 > 012ck'> .
k k' kK
Using (a7)-(a9) in (a6) we get
1

On

E [; > akk@,,(xl)a,(xz)]2§4<L2+2L ;EO ai+ ( qz a2>2> =M (say).
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Since g;— o0 as n— oo, L<oco and >} ai<oco, we conclude from (ab)

that g ;2 |E D,(j5")|=

k=0

ol 52 G-1(-2=0(

nlol

1

on

)——»0 as m— oo,

Therefore from (a4) we conclude that

2O EWLWE -1 as n—o0 .
<7

This implies that E (33 W, —1))*—0 as n— oo.
(i) To show sup|W,,|—0.
7

P [sup|W,,|>e]S S PWi>e1< SSEWS—0, by (a3).
Jj= g J=

This completes the proof of Lemma 2.
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